Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Positive definite functions of Hopf $C^ *$-algebras
HTML articles powered by AMS MathViewer

by Xiu Chi Quan PDF
Proc. Amer. Math. Soc. 123 (1995), 615-625 Request permission

Abstract:

In this paper we study positive definite functions of Hopf ${C^ \ast }$-algebras. First of all, we introduce Fourier transformation on Hopf ${C^\ast }$-algebras and use Fourier transform to characterize positive definite functions. Then we proceed to study smooth positive definite functions on Hopf ${C^\ast }$-algebras. A complete description of smooth positive definite functions is obtained. Also, a Bochner type result for smooth positive definite functions is proved.
References
  • Eiichi Abe, Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR 594432
  • Henri Cartan and Roger Godement, ThĂ©orie de la dualitĂ© et analyse harmonique dans les groupes abĂ©liens localement compacts, Ann. Sci. École Norm. Sup. (3) 64 (1947), 79–99 (French). MR 0023241
  • Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
  • X. Quan, Representations of Hopf ${C^\ast }$-algebras. I, II, preprint. —, Krien algebras and structure of Hopf ${C^\ast }$-algebras, preprint. J. Vallin, ${C^\ast }$-Algebre de Hopf et ${C^\ast }$-algebre de Kac, Proc. London Math. Soc. (3) 50 (1985), 131-174.
  • S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665. MR 901157
  • —, Twisted $SU(n)$ group, Tanaka-Krein duality, Invent. Math. 93 (1989), 35-76.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05, 16W30, 17B37
  • Retrieve articles in all journals with MSC: 46L05, 16W30, 17B37
Additional Information
  • © Copyright 1995 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 123 (1995), 615-625
  • MSC: Primary 46L05; Secondary 16W30, 17B37
  • DOI: https://doi.org/10.1090/S0002-9939-1995-1209427-X
  • MathSciNet review: 1209427