On the Diophantine equation $2^ n+px^ 2=y^ p$
HTML articles powered by AMS MathViewer
- by Mao Hua Le
- Proc. Amer. Math. Soc. 123 (1995), 321-326
- DOI: https://doi.org/10.1090/S0002-9939-1995-1215203-4
- PDF | Request permission
Abstract:
Let p be a prime with $p > 3$. In this paper we prove that: (i) the equation ${2^n} + p{x^2} = {y^p}$ has no positive integer solution (x, y, n) with $\gcd (x,y) = 1$; (ii) if $p \nequiv 7 \pmod 8$, then the equation has no positive integer solution (x, y, n).References
- J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 213–222. MR 0314736
- Rudolf Lidl and Harald Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, vol. 20, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn. MR 746963
- Wilhelm Ljunggren, Über die Gleichungen $1+Dx^2=2y^n$ und $1 + Dx^2=4y^n$, Norske Vid. Selsk. Forh., Trondhjem 15 (1942), no. 30, 115–118 (German). MR 0019646
- Maurice Mignotte and Michel Waldschmidt, Linear forms in two logarithms and Schneider’s method. III, Ann. Fac. Sci. Toulouse Math. (5) suppl. (1989), 43–75 (English, with English and French summaries). MR 1425750 T. Nagell, Sur l’impossibilité de quelques équations a deux indéterminées, Norsk Mat. Forenings Skrifter (1) 13 (1921), 65-82.
- Trygve Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsaliensis (4) 16 (1955), no. 2, 38. MR 70645 S. Rabinowitz, The solutions of $3{y^2} \pm {2^n} = {x^3}$, Proc. Amer. Math. Soc. 69 (1978), 213-218.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 321-326
- MSC: Primary 11D61; Secondary 11J86
- DOI: https://doi.org/10.1090/S0002-9939-1995-1215203-4
- MathSciNet review: 1215203