A unified approach to some prediction problems
Author:
Stephen D. Abbott
Journal:
Proc. Amer. Math. Soc. 123 (1995), 425-431
MSC:
Primary 47N30; Secondary 47B99, 60G25
DOI:
https://doi.org/10.1090/S0002-9939-1995-1216809-9
MathSciNet review:
1216809
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we solve a general extremal problem for a nonnegative operator in Hilbert space. We show that it contains the classical infimum problems of Szegö and Kolmogorov for bounded weight functions on the circle and also prove some new prediction theorems.
- [1] H. Dym and H. P. McKean, Fourier series and integrals, Academic Press, New York-London, 1972. Probability and Mathematical Statistics, No. 14. MR 0442564
- [2] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- [3] Ulf Grenander and Murray Rosenblatt, Statistical analysis of stationary time series, John Wiley & Sons, New York; Almqvist & Wiksell, Stockholm, 1957. MR 0084975
- [4] Berrien Moore III, The Szegő infimum, Proc. Amer. Math. Soc. 29 (1971), 55–62. MR 0290170, https://doi.org/10.1090/S0002-9939-1971-0290170-2
- [5] B. Moore, M. Rosenblum, and J. Rovnyak, Toeplitz operators associated with isometries, Proc. Amer. Math. Soc. 49 (1975), 189–194. MR 0374978, https://doi.org/10.1090/S0002-9939-1975-0374978-4
- [6] Marvin Rosenblum and James Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications. MR 822228
- [7] S. R. Treil′, Geometric methods in spectral theory of vector-valued functions: some recent results, Toeplitz operators and spectral function theory, Oper. Theory Adv. Appl., vol. 42, Birkhäuser, Basel, 1989, pp. 209–280. MR 1030053, https://doi.org/10.1007/978-3-0348-5587-7_5
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47N30, 47B99, 60G25
Retrieve articles in all journals with MSC: 47N30, 47B99, 60G25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1995-1216809-9
Keywords:
Szegö's infimum,
Kolmogorov's infimum,
prediction theory,
Hardy space,
Toeplitz operator,
Hilbert space
Article copyright:
© Copyright 1995
American Mathematical Society