Spline wavelet bases of weighted $L^ p$ spaces, $1\leq p<\infty$
HTML articles powered by AMS MathViewer
- by J. García-Cuerva and K. S. Kazarian
- Proc. Amer. Math. Soc. 123 (1995), 433-439
- DOI: https://doi.org/10.1090/S0002-9939-1995-1216812-9
- PDF | Request permission
Abstract:
We study necessary conditions on the weight w for the spline wavelet systems to be bases in the weighted space ${L^p}(w)$.References
- Charles K. Chui, An introduction to wavelets, Wavelet Analysis and its Applications, vol. 1, Academic Press, Inc., Boston, MA, 1992. MR 1150048
- Charles K. Chui and Jian-zhong Wang, On compactly supported spline wavelets and a duality principle, Trans. Amer. Math. Soc. 330 (1992), no. 2, 903–915. MR 1076613, DOI 10.1090/S0002-9947-1992-1076613-3 Z. Cisielski and J. Domsta, Construction of an orthonormal basis in ${C^m}({I^d})$ and $W_p^m({I^d})$, Studia Math. 61 (1972), 210-223.
- Guy David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics, vol. 1465, Springer-Verlag, Berlin, 1991. MR 1123480, DOI 10.1007/BFb0091544
- J. García-Cuerva and K. S. Kazarian, Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces, Studia Math. 109 (1994), no. 3, 255–276. MR 1274012, DOI 10.4064/sm-109-3-255-276
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- K. S. Kazarjan, The multiplicative complementation of some incomplete orthonormal systems to bases in $L^{p},\ 1\leq p<\infty$, Anal. Math. 4 (1978), no. 1, 37–52 (Russian, with English summary). MR 481910, DOI 10.1007/BF01904857 —, On bases and unconditional bases in the spaces ${L^p}(d\mu ),1 \leq p < \infty$, Studia Math. 71 (1982), 227-249.
- Yves Meyer, Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. MR 1085487
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Jan-Olov Strömberg, A modified Franklin system and higher-order spline systems on $\textbf {R}^{n}$ as unconditional bases for Hardy spaces, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 475–494. MR 730086
- Robert E. Zink, The Franklin system as Schauder basis for $L^p_\mu [0,1]$, Proc. Amer. Math. Soc. 103 (1988), no. 1, 225–233. MR 938673, DOI 10.1090/S0002-9939-1988-0938673-1
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 433-439
- MSC: Primary 42C15; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1216812-9
- MathSciNet review: 1216812