On the approximation of fixed points for locally pseudo-contractive mappings
HTML articles powered by AMS MathViewer
- by Claudio H. Morales and Simba A. Mutangadura
- Proc. Amer. Math. Soc. 123 (1995), 417-423
- DOI: https://doi.org/10.1090/S0002-9939-1995-1216820-8
- PDF | Request permission
Abstract:
Let X and its dual ${X^ \ast }$ be uniformly convex Banach spaces, D an open and bounded subset of X, T a continuous and pseudo-contractive mapping defined on ${\text {cl}}(D)$ and taking values in X. If T satisfies the following condition: there exists $z \in D$ such that $\left \| {z - Tz} \right \| < \left \| {x - Tx} \right \|$ for all x on the boundary of D, then the trajectory $t \to {z_t} \in D,t \in [0,1)$, defined by ${z_t} = tT({z_t}) + (1 - t)z$ is continuous and converges strongly to a fixed point of T as $t \to {1^ - }$.References
- Felix E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882. MR 232255, DOI 10.1090/S0002-9904-1967-11823-8
- Felix E. Browder, Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82–90. MR 206765, DOI 10.1007/BF00251595
- F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566–570. MR 190744, DOI 10.1090/S0002-9904-1966-11543-4
- R. E. Bruck, W. A. Kirk, and S. Reich, Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces, Nonlinear Anal. 6 (1982), no. 2, 151–155. MR 651696, DOI 10.1016/0362-546X(82)90083-9
- Klaus Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365–374. MR 350538, DOI 10.1007/BF01171148
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- W. A. Kirk, A fixed point theorem for local pseudocontractions in uniformly convex spaces, Manuscripta Math. 30 (1979/80), no. 1, 89–102. MR 552364, DOI 10.1007/BF01305991
- W. A. Kirk and Claudio Morales, On the approximation of fixed points of locally nonexpansive mappings, Canad. Math. Bull. 24 (1981), no. 4, 441–445. MR 644533, DOI 10.4153/CMB-1981-067-0
- C. Morales, Pseudocontractive mappings and the Leray-Schauder boundary condition, Comment. Math. Univ. Carolin. 20 (1979), no. 4, 745–756. MR 555187
- Claudio Morales, On the fixed-point theory for local $k$-pseudocontractions, Proc. Amer. Math. Soc. 81 (1981), no. 1, 71–74. MR 589138, DOI 10.1090/S0002-9939-1981-0589138-4
- Claudio H. Morales, Strong convergence theorems for pseudo-contractive mappings in Banach space, Houston J. Math. 16 (1990), no. 4, 549–557. MR 1097087
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 417-423
- MSC: Primary 47H09; Secondary 47H06, 47H10, 47H17
- DOI: https://doi.org/10.1090/S0002-9939-1995-1216820-8
- MathSciNet review: 1216820