THE DISCRETE NATURE OF THE PALEY-WIENER SPACES

CAROLYN EOFF

(Communicated by Albert Baernstein II)

Abstract. The Shannon Sampling Theorem suggests that a function with bandwidth \(\pi \) is in some way determined by its samples at the integers. In this work we make this idea precise for the functions in the Paley-Wiener space \(E^p \). For \(p > 1 \), we make a modest contribution, but the basic result is implicit in the classical work of Plancherel and Pólya (1937). For \(0 < p < 1 \), we combine old and new results to arrive at a characterization of \(E^p \) via the discrete Hilbert transform. This indicates that for such entire functions to belong to \(L^p(\mathbb{R}, dx) \), not only is a certain rate of decay required, but also a certain subtle oscillation.

1. Introduction

In this paper we study, for \(0 < p \), the space \(E^p_\tau \) of entire functions \(f \) of finite exponential type \(\tau \) for which

\[
\|f\|_p^p = \int_{-\infty}^{+\infty} |f(x)|^p dx < +\infty.
\]

\(E^p_\tau \) is clearly a subspace of \(L^p(\mathbb{R}, dx) \), so \(\|f\|_p \) is a norm for \(1 \leq p \) and a quasinorm for \(0 < p < 1 \). Recall that an entire function \(f \) is of exponential type \(\tau \) if \(f(z) = \mathcal{O}(e^{\varepsilon(|z|^\tau)}) \) for all \(\varepsilon > 0 \).

For the sequel, we essentially consider \(\tau = \pi \), as the other cases are handled by a change of variables. Henceforth, \(E^p_\pi = E^p \). Our definition of \(E^p \) is motivated by a classical theorem of Paley and Wiener.

Theorem 1 (Paley and Wiener). For an entire function \(f \) to belong to \(E^2 \), it is necessary and sufficient that there exist \(\psi \in L^2([\pi, \pi]) \) such that

\[
f(z) = \int_{-\pi}^{\pi} \psi(t)e^{itz} dt.
\]

Basic facts about entire functions can be found in [1]; in particular, for \(f \) in \(E^p \), \(|f(x)| \to 0 \), as \(|x| \to +\infty \). This allows for the observation that, unlike the \(L^p(\mathbb{R}, dx) \) spaces, the \(E^p \) spaces are nested: \(E^p \subseteq E^q \), if \(0 < p \leq q \).

Received by the editors January 14, 1993 and, in revised form, May 19, 1993; presented by the author at the AMS Special Session on Holomorphic Spaces, II, Joint Meeting of the AMS-MAA, San Antonio, Texas, January 13, 1993.

1991 Mathematics Subject Classification. Primary 30D10, 30D55.

This work was supported in part by National Science Foundation grant NSF-DMS-9008763.

©1994 American Mathematical Society

0002-9939/94 $1.00 +$.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Many facts about E^p, $0 < p < 2$, follow from known facts about E^2. (E^2 is denoted PW by some authors, e.g., [7].)

A brief review of some of these facts: E^2 is the isometric image of $L_2([-\pi, \pi])$ under the inverse Fourier transform and is therefore a Hilbert space. Generally speaking, a function whose Fourier transform is supported in an interval is said to be band-limited; such functions are interpreted as signals, with no frequencies outside the "band". E^2 seems to play a significant role in signal processing applications [5]. Central to the E^2 theory is the so-called sinc function

$$\text{sinc}(z) = \frac{\sin \pi z}{\pi z}.$$

Since $\text{sinc}(z - n)$ is the image of $e^{-int}/\sqrt{2\pi}$ under the inverse transform, the collection $\{\text{sinc}(z - n)\}_{n \in \mathbb{Z}}$ is an orthonormal basis of E^2.

The cardinal series of a function f is

$$f(x) = \sum_{n=-\infty}^{+\infty} f(n) \text{sinc}(x - n).$$

Many facts about the history of the cardinal series and especially its place in communication theory can be found in the comprehensive article of J. R. Higgins [5]. As we will see, for $p > 1$ the sinc functions play the same role as the standard unit vectors in l_p. Although the sinc functions do not belong to E^p, for $0 < p \leq 1$, they are still central to our results. A bit of notation: In this paper, l_p will denote the space of p-summable sequences indexed on the integers. Also, the term samples of a function f will always refer to the sequence $\{f(n)\}_{n \in \mathbb{Z}}$.

2. E^p is a quasi-Banach space

Although E^p is clearly a subspace of $L_p(\mathbb{R}, dx)$, it does not seem to have been noticed that E^p is complete, for values of p other than 2. To show that E^p is closed, it suffices to prove that convergence in E^p forces uniform convergence on compact subsets of \mathbb{C} and preserves type. This and more will follow from the following results of Plancherel and Pólya [6].

Theorem 2 (Plancherel and Pólya). Let $p, \tau > 0$ and $f \in E^p$.

(i) For $y \in \mathbb{R}$

$$\int_{-\infty}^{+\infty} |f(x + iy)|^p \, dx \leq e^{p\tau|y|} \int_{-\infty}^{+\infty} |f(x)|^p \, dx.$$

(ii) There exists a constant $A > 0$, which depends only on τ and p so that

$$\sum_{n=-\infty}^{+\infty} |f(n)|^p \leq A \int_{-\infty}^{+\infty} |f(x)|^p \, dx.$$

Let $z_0 = x_0 + iy_0 \in \mathbb{C}$ and denote $f_{z_0}(u) = f(u + z_0)$. If $f \in E^p$, then f_{z_0}
also belongs to E^p. Applying (i) and (ii) we see that
\[
|f(z_0)|^p = |f_{z_0}(0)|^p
\leq \sum_{-\infty}^{\infty} |f_{z_0}(k)|^p
\leq B \int_{-\infty}^{\infty} |f_{z_0}(t)|^p \, dt
= B \int_{-\infty}^{\infty} |f_{iy_0}(t + x_0)|^p \, dt
= B \int_{-\infty}^{\infty} |f_{iy_0}(t)|^p \, dt
= B \int_{-\infty}^{\infty} |f(t + iy_0)|^p \, dt
\leq B e^{p |y|} \int_{-\infty}^{\infty} |f(t)|^p \, dt.
\]

Consequently, for $f \in E^p$,
\[
|f(z_0)| \leq B e^{p |y|} \|f\|_p.
\]

From this, we see that if (f_n) is a Cauchy sequence in E^p, then it is Cauchy with
respect to the topology of uniform convergence on compacta. Consequently, the
limit function is not only in $L_p(\mathbb{R})$, but is entire and of exponential type π.
These observations yield the following result.

Theorem 3. For $0 < p$, E^p is complete with respect to the $\| \|_p$ quasinorm.

At this point, perhaps it is worthwhile to list some of the bounded operators
on E^p which are of natural interest. It is obvious that real translation maps E^p
isometrically into itself, and it follows from Theorem 2 that complex translation
also maps E^p boundedly into itself. The map $f \mapsto f_c$, where $f_c(z) = f(cz)$,
is a bounded map into E^p for $|c| \leq 1$, but in general f_c may not belong to
E^p, for $|c| > 1$. Also, it follows from the work of Plancherel and Pólya
in [6] that differentiation is a bounded operator from E^p into itself. Finally, it
should be observed that part (i) of Theorem 2 implies that the map $f \mapsto e^{i\pi z} f$
is an isometry from E^p into H^p of the upper half-plane.

3. E^p is isomorphic to l^p, $p > 1$

At the heart of our subsequent results is the following classical result of
Plancherel and Pólya [6].

Theorem 4 (Plancherel and Pólya). Let $p, \tau > 0$ and let $f \in E_p^\tau$.

(i) If $\tau < \pi$, then there exists a constant $B > 0$ which depends only on τ
and p so that
\[
\int_{-\infty}^{+\infty} |f(x)|^p \, dx \leq B \sum_{n=-\infty}^{+\infty} |f(n)|^p.
\]

(ii) If $\lim_{z \to \infty} f(z)e^{-\pi |z|} = 0$ and if $1 < p$, then (i) holds and the constant
B depends only on p.

Now Plancherel and Pólya proved that if a function f of exponential type τ also belongs to $L_p(\mathbb{R})$, then f satisfies $\lim_{z \to \infty} f(z)e^{-\tau|z|} = 0$. Theorems 2 and 4 allowed them to make the following observation.

Corollary 1. Let $1 < p$. There exist constants C_1 and C_2 (depending only on p) such that for all functions in E^p

$$C_1 \sum_{n=-\infty}^{+\infty} |f(n)|^p \leq \int_{-\infty}^{+\infty} |f(x)|^p dx \leq C_2 \sum_{n=-\infty}^{+\infty} |f(n)|^p.$$

Plancherel and Pólya used this fact to prove that for a function f in E^p, $p > 1$, the cardinal series

$$\sum_{n=-\infty}^{+\infty} f(n) \text{sinc}(z-n)$$

converges *en moyenne d'ordre* p *vers* f [6]. Conversely, it is clear from the corollary and Theorem 3 that given a sequence $\{\alpha_n\}$ in l_p one can show that the resulting cardinal series

$$F(z) = \sum_{n=-\infty}^{+\infty} a_n \text{sinc}(z-n)$$

represents a unique function in E^p, with samples $\{\alpha_n\}$. It is also evident that the sinc functions form a basis, in fact, an unconditional basis for E^p, $p > 1$. These remarks, together with Corollary 1, yield the following result.

Theorem 5. Let $p > 1$. E^p is isomorphic to l_p via the mapping $f \to \{f(n)\}_{n \in \mathbb{Z}}$.

This result has an obvious consequence.

Corollary 2. For $p > 1$, $(E^p)^* \cong E^q$, where $\frac{1}{p} + \frac{1}{q} = 1$.

We see that the action of a linear functional $\phi \in (E^p)^*$, $\phi \sim g \in E^q$, is given by

$$\phi(f) = \sum_{n \in \mathbb{Z}} f(n)\overline{g(n)} = \int_{-\infty}^{+\infty} f(x)\overline{g(x)}dx$$

for all $f \in E^p$.

4. E^p IS ISOMORPHIC TO THE DISCRETE HARDY SPACE $H^p(\mathbb{Z})$, $0 < p \leq 1$

In many situations, $p = 1$ is a critical value. Recall from the Hardy space theory that since the Hilbert transform is bounded on L_p, $p > 1$, H^p and L_p are essentially the same. However, for $0 < p \leq 1$, H^p turns out to be a proper closed subspace of L_p consisting of functions which not only satisfy the size condition but also possess a certain type of cancellation. Indeed, H^p consists of those functions in L_p for which the Hilbert transform (viz., the conjugation operator) is bounded (e.g., see [4] or [2]).

We have found that a parallel situation exists for E^p with respect to l_p. Now $l_p = L_p(\mathbb{Z}, d\sigma)$ for $\sigma =$ counting measure; so, by analogy with the standard theory (and at the risk of overusing the Hardy space notation and terminology),
we define the discrete Hardy space, $H^p(Z)$, $0 < p < \infty$, to consist of those sequences $\alpha = \{\alpha_k\} \in l_p$ which satisfy

$$\sum_{k \in Z} \left| \sum_{n \neq k} \frac{\alpha_n}{k - n} \right|^p < +\infty.$$

Thus $H^p(Z)$ is the subspace of l_p consisting of those sequences $\alpha = \{\alpha_n\}$ for which the discrete Hilbert transform also belongs to l_p.

The discrete Hilbert transform, H, of a sequence $\alpha = \{\alpha_n\}$ is defined by

$$H(\alpha)(k) = \sum_{n \neq k} \frac{\alpha_n}{k - n}.$$

Note that for any noninteger $c \in \mathbb{R}$, $H_c(\alpha)(k) = \sum_{n \in Z} \alpha_n/(k - n + c)$ yields the same class of sequences. $H_c(\alpha)$ is convolution of the sequence α with the kernel $1/(n + c)$. For the sequel, we will use H_c with $c = \frac{1}{2}$, which we will (by a small abuse of notation) denote by H.

$H^1(Z)$ is mentioned by Coifman and Weiss [2, p. 622] as an example of a Hardy space, $H^p(X)$, associated with a space X of homogeneous type; these spaces are the result of extending the atomic decomposition theory for the classical Hardy spaces to more general settings. A caveat regarding notation: $H^p(X)$ is defined atomically in [2]; thus it is not obvious that $H^p(Z)$ as defined above coincides with the corresponding atomic space of the same label in [2], although it is easily seen to contain the atomic space. (Coifman and Weiss suggest that the two are the same [2]; we shall consider the connection in a later paper.)

A priori, it would appear that, for $p > 1$, $H^p(Z)$ and l_p are different. However, Plancherel and Pólya [6] proved that if a sequence $\alpha = \{\alpha_n\} \in l_p$ for $p > 1$, then there is a constant $C > 0$, so that

$$||H(\alpha)||_{l_p} \leq C\|\alpha\|_{l_p}.$$

(A discrete version of the M. Riesz theorem.) Thus, for $p > 1$, $H^p(Z)$ and l_p coincide.

For $0 < p \leq 1$, we define an obvious quasinorm on $H^p(Z)$. For $\alpha = \{\alpha_n\}_{n \in Z}$,

$$||\alpha||_{H^p} = ||\alpha||_{l_p} + ||H(\alpha)||_{l_p}.$$

That $H^p(Z)$ is complete with respect to this quasinorm will follow from subsequent results.

We recall Plancherel and Pólya’s inequality for functions of type strictly less than π.

$$\int_{-\infty}^{+\infty} |f(x)|^p dx \leq B \sum_{n = -\infty}^{+\infty} |f(m)|^p.$$

As we recall, for $p > 1$ this inequality holds for functions of type equal to π, provided it is known that the function lies in E^p. For $0 < p \leq 1$, the inequality cannot hold in general for functions of type equal to π, even for functions belonging to E^p. For example, let

$$g_n(z) = \frac{n \sin(\pi z)}{\pi z(z - n)}.$$
Now
\[g_n = -\frac{\sin \pi x}{\pi x} + \frac{\sin \pi x}{\pi(x - n)}, \]
so that for \(x \) between 0 and \(n \), \(|g_n(x)| \geq \frac{|\sin \pi x|}{|\pi x|}\). Consequently
\[
\int_{-\infty}^{\infty} |g_n(x)|^p dx \geq \int_0^n \left| \frac{\sin \pi x}{\pi x} \right|^p dx,
\]
so that \(\|g_n\|_p \sim |n|^{p-1} \), for \(\frac{1}{2} < p < 1 \) and \(\sim \log |n| \) for \(p = 1 \), even though \(\|g_n(k)\|_p = 2^{\frac{k}{2}} \) for all \(n \). Similar examples can be constructed for \(0 < p \leq \frac{1}{2} \).

In particular, Plancherel and Pólya’s inequality reveals a way to test if a function of type \(\pi \) belongs to \(E^p \); that is, we need only determine whether the samples \(\{f(\frac{k}{2})\} \) belong to \(l_p \), due to the fact that \(f(\frac{k}{2}) \) is of type \(\frac{k}{2} \). It is this simple observation that allows us to show the connection between \(E^p \) and \(H^p(Z) \).

Theorem 6. Let \(0 < p \leq 1 \). If \(f \) belongs to \(E^p \), then \(\{(-1)^n f(n)\} \) belongs to \(H^p(Z) \). Conversely, if \(\{\alpha_n\} \) belongs to \(H^p(Z) \), there is a unique \(f \in E^p \) such that \(f(n) = (-1)^n \alpha_n \).

Proof. Let \(f \in E^p \). \(f \) has a cardinal series representation
\[
f(z) = \sum_{n=\infty}^{\infty} f(n) \text{sinc}(z - n).
\]
(Since \(f \) is also in \(E^2 \), the cardinal series converges uniformly on compact subsets of \(C \).)

From Theorem 4(i), \(\{f(n)\} \in l_p \). For even \(n \), we simply recover the original samples of \(f \), which thus belong to \(l_p \). For odd \(n \), \(n = 2k + 1, k \in \mathbb{Z}, \)
\[
f \left(\frac{2k + 1}{2} \right) = \sum_m f(m) \text{sinc} \left(\frac{2k + 1}{2} - m \right) = \sum_m f(m) \frac{\sin \left(\frac{2k+1}{2} - m \right)}{\pi \left(\frac{2k+1}{2} - m \right)}
\]
\[
= \frac{\sin \left(\frac{2k+1}{2} \right)}{\pi} \sum_m \cos(m\pi) f(m) \frac{1}{k - m + \frac{1}{2}}
\]
\[
= \frac{(-1)^k}{\pi} \sum_m (-1)^m f(m) \frac{1}{k - m + \frac{1}{2}} = \frac{(-1)^k}{\pi} H((-1)^m f(m))(k).
\]
Since \(\{f(\frac{2k+1}{2})\} \in l_p \), it follows that the Hilbert transform of \(\{(-1)^n f(n)\} \in l_p \), whereby \(\{(-1)^n f(n)\} \in H^p(Z) \).

Next suppose \(\{\alpha_n\} \in H^p(Z) \). We form the cardinal series
\[
g(z) = \sum_{n=-\infty}^{\infty} (-1)^n \alpha_n \text{sinc}(z - n).
\]
Since \(\{\alpha_n\} \in l_p \), \(g \) is at least in \(E^2 \), and thus we know that the cardinal series converges uniformly on compacta. Now \(g(\frac{k}{2}) \) is of type \(\frac{k}{2} \); thus we may apply Theorem 4(i). The above calculations with the cardinal series show that the sequence of samples of \(g(\frac{k}{2}) \) at the even integers is \(\{\alpha_k\} \), and the sequence of samples of \(g(\frac{k}{2}) \) at the odd integers is \(\{\frac{(-1)^k}{\pi} H(\{\alpha_n\})(k)\}_{k \in \mathbb{Z}} \). Consequently the sequence \(\{g(\frac{k}{2})\} \) belong to \(l_p \), whereby \(g \in E^p \).
This proof shows that we can map E^p onto $H^p(Z)$ via the map $f \to \{(-1)^nf(n)\}$. For a function f in E^p,
\[
\sum_{n=-\infty}^{\infty} \left| f\left(\frac{n}{2}\right)\right|^p = \sum_{k=-\infty}^{\infty} \left| f(k)\right|^p + \sum_{k=-\infty}^{\infty} \left| f\left(\frac{2k+1}{2}\right)\right|^p
\]
\[= \sum_{k=-\infty}^{\infty} \left| f(k)\right|^p + \frac{1}{\pi} \sum_{k=-\infty}^{\infty} \left| \sum_{m=-\infty}^{\infty} \frac{(-1)^m f(m)}{k-m+\frac{1}{2}} \right|^p.
\]

It follows from Theorem 4 and the above proof that there are constants $C_1, C_2 > 0$ so that
\[C_1\|\{(-1)^nf(n)\}\|_{H^p} \leq \|f\|_p \leq C_2\|\{(-1)^nf(n)\}\|_{H^p}
\]
for all $f \in E^p$.

Thus we see that the $H^p(Z)$ quasinorm is equivalent to the E^p quasinorm, so that the map from E^p onto $H^p(Z)$ is continuous, thereby yielding the following result.

Theorem 7. For $0 < p \leq 1$, E^p is isomorphic to $H^p(Z)$.

5. Comments

It is clear that sequences in $H^p(Z)$, $0 < p \leq 1$, must sum to zero. Consequently, for a function in E^p, $\sum_{n \in Z} (-1)^nf(n) = 0$; this also follows from well-known facts from classical harmonic analysis. For a function f in E^p, the Fourier transform \hat{f} is continuous on R and 0 off of $[-\pi, \pi]$. The above summation simply reflects the fact that $\hat{f}(\pm \pi) = 0$. In fact, it is the cancellation that distinguishes $H^p(Z)$ from l_p and, consequently, essentially what distinguishes E^p from L_p, for $0 < p \leq 1$. As for $H^p(Z)$, membership in E^p requires progressively greater cancellation (actually, oscillation) for progressively smaller values of p. We will further examine this and other properties of E^p in a subsequent paper [3].

Acknowledgments

I thank Professor Nigel Kalton for some helpful suggestions regarding this paper. I also thank Professor Joel Shapiro, whose question initially prompted my investigations of the Paley-Wiener spaces.

References

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ARKANSAS, FAYETTEVILLE, ARKANSAS 72701

E-mail address: ce24958@uafsystb