Convergence of heat kernels for degenerating hyperbolic surfaces
HTML articles powered by AMS MathViewer
- by Lizhen Ji
- Proc. Amer. Math. Soc. 123 (1995), 639-646
- DOI: https://doi.org/10.1090/S0002-9939-1995-1219726-3
- PDF | Request permission
Abstract:
For a degenerating family of hyperbolic surfaces ${S_l}(l \geq 0)$, we show that the heat kernel of ${S_l}$ converges to the heat kernel of ${S_0}$. The proof consists of two steps. For small time, we use the Brownian motion interpretation of the heat kernels to prove the convergence. Then we use Gaussian type bounds for the heat kernels and their derivatives and a priori bounds for heat equations to finish the proof.References
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Dennis A. Hejhal, Regular $b$-groups, degenerating Riemann surfaces, and spectral theory, Mem. Amer. Math. Soc. 88 (1990), no. 437, iv+138. MR 1052555, DOI 10.1090/memo/0437
- Lizhen Ji, Spectral degeneration of hyperbolic Riemann surfaces, J. Differential Geom. 38 (1993), no. 2, 263–313. MR 1237486
- Lizhen Ji, The asymptotic behavior of Green’s functions for degenerating hyperbolic surfaces, Math. Z. 212 (1993), no. 3, 375–394. MR 1207299, DOI 10.1007/BF02571664
- Jay Jorgenson and Rolf Lundelius, Convergence theorems for relative spectral functions on hyperbolic Riemann surfaces of finite volume, Duke Math. J. 80 (1995), no. 3, 785–819. MR 1370116, DOI 10.1215/S0012-7094-95-08027-2
- Linda Keen, Collars on Riemann surfaces, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974, pp. 263–268. MR 0379833
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Sidney C. Port and Charles J. Stone, Brownian motion and classical potential theory, Probability and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0492329
- D. B. Ray and I. M. Singer, $R$-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 295381, DOI 10.1016/0001-8708(71)90045-4
- N. Th. Varopoulos, Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique, Bull. Sci. Math. 113 (1989), no. 3, 253–277. MR 1016211
- Michael Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 33 (1991), no. 2, 487–539. MR 1094467
- Scott A. Wolpert, Spectral limits for hyperbolic surfaces. I, II, Invent. Math. 108 (1992), no. 1, 67–89, 91–129. MR 1156387, DOI 10.1007/BF02100600
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 639-646
- MSC: Primary 58G11; Secondary 58G25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1219726-3
- MathSciNet review: 1219726