Law of the iterated logarithm and invariance principle for $M$-estimators
HTML articles powered by AMS MathViewer
- by Xuming He and Gang Wang
- Proc. Amer. Math. Soc. 123 (1995), 563-573
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231036-7
- PDF | Request permission
Abstract:
We prove the law of the iterated logarithm for a general class of M-estimators which covers in particular robust M-estimators and S-estimators of multivariate location-scatter. We also obtain an almost sure invariance principle (Bahadur-type representation) for these estimators.References
- N. H. Bingham, Variants on the law of the iterated logarithm, Bull. London Math. Soc. 18 (1986), no. 5, 433–467. MR 847984, DOI 10.1112/blms/18.5.433
- Dennis D. Boos and R. J. Serfling, A note on differentials and the CLT and LIL for statistical functions, with application to $M$-estimates, Ann. Statist. 8 (1980), no. 3, 618–624. MR 568724
- Raymond J. Carroll, On almost sure expansions for $M$-estimates, Ann. Statist. 6 (1978), no. 2, 314–318. MR 464470
- Yuan Shih Chow and Henry Teicher, Probability theory, Springer-Verlag, New York-Heidelberg, 1978. Independence, interchangeability, martingales. MR 513230
- Dorota M. Dąbrowska, Kaplan-Meier estimate on the plane: weak convergence, LIL, and the bootstrap, J. Multivariate Anal. 29 (1989), no. 2, 308–325. MR 1004341, DOI 10.1016/0047-259X(89)90030-4
- P. L. Davies, Asymptotic behaviour of $S$-estimates of multivariate location parameters and dispersion matrices, Ann. Statist. 15 (1987), no. 3, 1269–1292. MR 902258, DOI 10.1214/aos/1176350505
- Herold Dehling, Complete convergence of triangular arrays and the law of the iterated logarithm for $U$-statistics, Statist. Probab. Lett. 7 (1989), no. 4, 319–321. MR 980708, DOI 10.1016/0167-7152(89)90115-6
- David A. Freedman, On tail probabilities for martingales, Ann. Probability 3 (1975), 100–118. MR 380971, DOI 10.1214/aop/1176996452 F. A. Greybill, Matrices with application in statistics, 2nd ed., Wadsworth, Belmont, CA, 1983.
- Peter Hall, Laws of the iterated logarithm for nonparametric density estimators, Z. Wahrsch. Verw. Gebiete 56 (1981), no. 1, 47–61. MR 612159, DOI 10.1007/BF00531973
- Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel, Robust statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. The approach based on influence functions. MR 829458
- Xuming He and Douglas G. Simpson, Robust direction estimation, Ann. Statist. 20 (1992), no. 1, 351–369. MR 1150348, DOI 10.1214/aos/1176348526
- C. C. Heyde, An iterated logarithm result for martingales and its application in estimation theory for autoregressive processes, J. Appl. Probability 10 (1973), 146–157. MR 365962, DOI 10.1017/s0021900200042157
- Peter J. Huber, The behavior of maximum likelihood estimates under nonstandard conditions, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 221–233. MR 0216620
- Peter J. Huber, Robust statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981. MR 606374
- H. K. Iverson and R. H. Randles, The effects on convergence of substituting parameter estimates into $U$-statistics and other families of statistics, Probab. Theory Related Fields 81 (1989), no. 3, 453–471. MR 983092, DOI 10.1007/BF00340061
- Jana Jurečková and Pranab Kumar Sen, Invariance principles for some stochastic processes relating to $M$-estimators and their role in sequential statistical inference, Sankhyā Ser. A 43 (1981), no. 2, 190–210. MR 666380
- J. Kiefer, Old and new methods for studying order statistics and sample quantiles. , Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969) Cambridge Univ. Press, London, 1970, pp. 349–357. MR 0286228
- Hendrik P. Lopuhaä, On the relation between $S$-estimators and $M$-estimators of multivariate location and covariance, Ann. Statist. 17 (1989), no. 4, 1662–1683. MR 1026304, DOI 10.1214/aos/1176347386 J. Marcinkiewicz and A. Zygmund, Sur les fonctions independantes, Fund. Math. 29 (1937), 60-90.
- Ricardo Antonio Maronna, Robust $M$-estimators of multivariate location and scatter, Ann. Statist. 4 (1976), no. 1, 51–67. MR 388656
- Herbert Robbins, Statistical methods related to the law of the iterated logarithm, Ann. Math. Statist. 41 (1970), 1397–1409. MR 277063, DOI 10.1214/aoms/1177696786
- P. Rousseeuw and V. Yohai, Robust regression by means of S-estimators, Robust and nonlinear time series analysis (Heidelberg, 1983) Lect. Notes Stat., vol. 26, Springer, New York, 1984, pp. 256–272. MR 786313, DOI 10.1007/978-1-4615-7821-5_{1}5
- Pranab Kumar Sen, Sequential nonparametrics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981. Invariance principles and statistical inference. MR 633884
- Robert J. Serfling, Approximation theorems of mathematical statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1980. MR 595165
- William F. Stout, Almost sure convergence, Probability and Mathematical Statistics, Vol. 24, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0455094
- V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211–226 (1964). MR 175194, DOI 10.1007/BF00534910
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 563-573
- MSC: Primary 62F35; Secondary 60F15, 60F17
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231036-7
- MathSciNet review: 1231036