Involutions on spin $4$-manifolds
HTML articles powered by AMS MathViewer
- by Daniel Ruberman
- Proc. Amer. Math. Soc. 123 (1995), 593-596
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231042-2
- PDF | Request permission
Abstract:
We show that a simply-connected spin 4-manifold which admits a locally linear involution must have vanishing signature. We also show that the codimensions of all components of the fixed point set of an involution on a spin 4-manifold are the same modulo 4. There is no assumption of local linearity in this result, which extends a lemma of Atiyah and Bott.References
- M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451–491. MR 232406, DOI 10.2307/1970721
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Allan L. Edmonds, Construction of group actions on four-manifolds, Trans. Amer. Math. Soc. 299 (1987), no. 1, 155–170. MR 869405, DOI 10.1090/S0002-9947-1987-0869405-7
- Allan L. Edmonds, Aspects of group actions on four-manifolds, Topology Appl. 31 (1989), no. 2, 109–124. MR 994404, DOI 10.1016/0166-8641(89)90075-8
- Patrick M. Gilmer, Configurations of surfaces in $4$-manifolds, Trans. Amer. Math. Soc. 264 (1981), no. 2, 353–380. MR 603768, DOI 10.1090/S0002-9947-1981-0603768-7
- Sławomir Kwasik and Reinhard Schultz, Desuspension of group actions and the ribbon theorem, Topology 27 (1988), no. 4, 443–457. MR 976586, DOI 10.1016/0040-9383(88)90023-7
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 593-596
- MSC: Primary 57M60; Secondary 57N13, 57S17
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231042-2
- MathSciNet review: 1231042