Indefinite elliptic boundary value problems on irregular domains
HTML articles powered by AMS MathViewer
- by Jacqueline Fleckinger and Michel L. Lapidus
- Proc. Amer. Math. Soc. 123 (1995), 513-526
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231296-2
- PDF | Request permission
Abstract:
We establish estimates for the remainder term of the asymptotics of the Dirichlet or Neumann eigenvalue problem \[ - \Delta u(x) = \lambda r(x)u(x),\quad x \in \Omega \subset {\mathbb {R}^n},\] defined on the bounded open set $\Omega \subset {\mathbb {R}^n}$; here, the "weight" r is a real-valued function on $\Omega$ which is allowed to change sign in $\Omega$ and the boundary $\partial \Omega$ is irregular. We even obtain error estimates when the boundary is "fractal". These results—which extend earlier work of the authors [particularly, J. Fleckinger & M. L. Lapidus, Arch. Rational Mech. Anal. 98 (1987), 329-356; M. L. Lapidus, Trans. Amer. Math. Soc. 325 (1991), 465-529]—are already of interest in the special case of positive weights.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246
- Richard Beals, Indefinite Sturm-Liouville problems and half-range completeness, J. Differential Equations 56 (1985), no. 3, 391–407. MR 780497, DOI 10.1016/0022-0396(85)90085-3
- M. Š. Birman and M. Z. Solomjak, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory, American Mathematical Society Translations, Series 2, vol. 114, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by F. A. Cezus. MR 562305
- Jean Brossard and René Carmona, Can one hear the dimension of a fractal?, Comm. Math. Phys. 104 (1986), no. 1, 103–122. MR 834484
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- M. Faierman, Elliptic problems involving an indefinite weight, Trans. Amer. Math. Soc. 320 (1990), no. 1, 253–279. MR 962280, DOI 10.1090/S0002-9947-1990-0962280-1 —, Non-selfadjoint elliptic problems involving an indefinite weight, Comm. Partial Differential Equations 15 (1990), 939-982.
- M. Faierman, Eigenfunction expansions for a nonselfadjoint elliptic boundary value problem involving an indefinite weight, Differential equations and applications, Vol. I, II (Columbus, OH, 1988) Ohio Univ. Press, Athens, OH, 1989, pp. 264–269. MR 1026146
- Jacqueline Fleckinger-Pellé and Mohamed El Fetnassi, Comportement asymptotique des valeurs propres de problèmes elliptiques “non définis à droite”, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 13, 599–602 (French, with English summary). MR 771357
- Jacqueline Fleckinger and Michel L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc. 295 (1986), no. 1, 305–324. MR 831201, DOI 10.1090/S0002-9947-1986-0831201-3
- Jacqueline Fleckinger and Michel L. Lapidus, Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights, Arch. Rational Mech. Anal. 98 (1987), no. 4, 329–356. MR 872751, DOI 10.1007/BF00276913
- Jacqueline Fleckinger and Michel L. Lapidus, Schrödinger operators with indefinite weight functions: asymptotics of eigenvalues with remainder estimates, Differential Integral Equations 7 (1994), no. 5-6, 1389–1418. MR 1269662
- Jacqueline Fleckinger and Guy Métivier, Théorie spectrale des opérateurs uniformément elliptiques sur quelques ouverts irréguliers, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A913–A916 (French). MR 320550
- Peter Hess, On the asymptotic distribution of eigenvalues of some nonselfadjoint problems, Bull. London Math. Soc. 18 (1986), no. 2, 181–184. MR 818823, DOI 10.1112/blms/18.2.181
- Peter Hess, On the spectrum of elliptic operators with respect to indefinite weights, Proceedings of the symposium on operator theory (Athens, 1985), 1986, pp. 99–109. MR 872278, DOI 10.1016/0024-3795(86)90309-5
- Peter Hess and Tosio Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980), no. 10, 999–1030. MR 588690, DOI 10.1080/03605308008820162 Hans G. Kaper and A. Zettl (eds.), Spectral theory of Sturm-Liouville operators, Proc. May-June 1984 Workshop, ANL-84-73, Argonne National Laboratory, Argonne, IL, 1984.
- Hans G. Kaper, Man Kam Kwong, and Anton Zettl, Singular Sturm-Liouville problems with nonnegative and indefinite weights, Monatsh. Math. 97 (1984), no. 3, 177–189. MR 753441, DOI 10.1007/BF01299145
- Michel L. Lapidus, Valeurs propres du laplacien avec un poids qui change de signe, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 12, 265–268 (French, with English summary). MR 745319
- Michel L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc. 325 (1991), no. 2, 465–529. MR 994168, DOI 10.1090/S0002-9947-1991-0994168-5
- Michel L. Lapidus, Can one hear the shape of a fractal drum? Partial resolution of the Weyl-Berry conjecture, Geometric analysis and computer graphics (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 17, Springer, New York, 1991, pp. 119–126. MR 1081333, DOI 10.1007/978-1-4613-9711-3_{1}3 —, Spectral and fractal geometry: from the Weyl-Berry conjecture to the Riemann zetafunction, Differential Equations and Mathematical Physics (C. Bennewitz, ed.), Proc. UAB Internat Conf. (Birmingham, March 1990), Academic Press, New York, 1992, pp. 151-182.
- Michel L. Lapidus and Jacqueline Fleckinger-Pellé, Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 4, 171–175 (French, with English summary). MR 930556
- Michel L. Lapidus and Jacqueline Fleckinger, The vibrations of a “fractal drum”, Differential equations (Xanthi, 1987) Lecture Notes in Pure and Appl. Math., vol. 118, Dekker, New York, 1989, pp. 423–436. MR 1021743
- Michel L. Lapidus and Carl Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 343–348 (French, with English summary). MR 1046509
- Michel L. Lapidus and Carl Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc. (3) 66 (1993), no. 1, 41–69. MR 1189091, DOI 10.1112/plms/s3-66.1.41
- Lynn H. Loomis and Shlomo Sternberg, Advanced calculus, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0227327 G. Métivier, Etude asymptotique des valeurs propres et de la fonction spectrale de problèmes aux limites, Thèse d’Etat, Nice, France, 1976.
- Guy Métivier, Valeurs propres de problèmes aux limites elliptiques irrégulières, Bull. Soc. Math. France Suppl. Mém. 51-52 (1977), 125–219 (French). MR 473578 Ȧ. Pleijel, Sur la distribution des valeurs propres de problèmes régis par l’équation $\Delta u + \lambda k(x,y)u = 0$, Ark. Mat. Astr. och Fysick 29B (1942), 1-8.
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Hans F. Weinberger, Variational methods for eigenvalue approximation, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 15, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1974. Based on a series of lectures presented at the NSF-CBMS Regional Conference on Approximation of Eigenvalues of Differential Operators, Vanderbilt University, Nashville, Tenn., June 26–30, 1972. MR 0400004
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 513-526
- MSC: Primary 35P15; Secondary 28A75, 35J25, 47F05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231296-2
- MathSciNet review: 1231296