Banach spaces with an unconditional basis that are isomorphic to a nonatomic Banach lattice
HTML articles powered by AMS MathViewer
- by Lea McClaran
- Proc. Amer. Math. Soc. 123 (1995), 471-476
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254847-0
- PDF | Request permission
Abstract:
It is proved that if X is a Banach space with an unconditional basis, then X is isomorphic to a nonatomic Banach lattice which is not order continuous if and only if X contains a subspace isomorphic to ${c_0}$.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- Ju. A. Abramovič and P. Voĭtaščik, The uniqueness of the order in the spaces $L_{p}[0,1]$ and $1_{p}$, Mat. Zametki 18 (1975), no. 3, 313–325 (Russian). MR 394097
- N. J. Kalton and P. Wojtaszczyk, On nonatomic Banach lattices and Hardy spaces, Proc. Amer. Math. Soc. 120 (1994), no. 3, 731–741. MR 1181168, DOI 10.1090/S0002-9939-1994-1181168-6
- E. Lacey and P. Wojtaszczyk, Nonatomic Banach lattices can have $l_1$ as a dual space, Proc. Amer. Math. Soc. 57 (1976), no. 1, 79–84. MR 402459, DOI 10.1090/S0002-9939-1976-0402459-9
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 471-476
- MSC: Primary 46B15; Secondary 46B42
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254847-0
- MathSciNet review: 1254847