Hit polynomials and the canonical antiautomorphism of the Steenrod algebra
HTML articles powered by AMS MathViewer
- by Judith H. Silverman
- Proc. Amer. Math. Soc. 123 (1995), 627-637
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254854-8
- PDF | Request permission
Abstract:
In this paper, we generalize a formula of Davis (Proc. Amer. Math. Soc. 44 (1974), 235-236) for the antiautomorphism of the $\bmod \text {-}2$ Steenrod algebra $\mathcal {A}(2)$, in the process formulating the analogue of the Adem relations for products $Sq(\overbrace {0, \ldots ,0}^{t - 1},a) \cdot Sq(\overbrace {0, \ldots ,0}^{t - 1},b)$. We also state a generalization of a conjecture by the author and Singer (On the action of Steenrod squares on polynomial algebras II, J. Pure Appl. Algebra (to appear)) concerning the $\mathcal {A}(2)$-action on ${\mathbb {F}_2}[{x_1}, \ldots ,{x_s}]$ and use the antiautomorphism formula to prove several cases of the generalized conjecture. We discuss the relationship between the two conjectures and make explicit a sufficient condition for Monks’s work to prove a special case of the original conjecture. Finally, we illustrate in a table the relative strengths of the special cases of the conjectures known to be true.References
- J. F. Adams and H. R. Margolis, Sub-Hopf-algebras of the Steenrod algebra, Proc. Cambridge Philos. Soc. 76 (1974), 45–52. MR 341487, DOI 10.1017/s0305004100048714
- S. R. Bullett and I. G. Macdonald, On the Adem relations, Topology 21 (1982), no. 3, 329–332. MR 649764, DOI 10.1016/0040-9383(82)90015-5
- Donald M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235–236. MR 328934, DOI 10.1090/S0002-9939-1974-0328934-1
- Andrew M. Gallant, Excess and conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 76 (1979), no. 1, 161–166. MR 534410, DOI 10.1090/S0002-9939-1979-0534410-8
- D. Kraines, On excess in the Milnor basis, Bull. London Math. Soc. 3 (1971), 363–365. MR 300271, DOI 10.1112/blms/3.3.363
- Edouard Lucas, Theorie des Fonctions Numeriques Simplement Periodiques, Amer. J. Math. 1 (1878), no. 4, 289–321 (French). MR 1505176, DOI 10.2307/2369373
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 99653, DOI 10.2307/1969932
- Kenneth G. Monks, Polynomial modules over the Steenrod algebra and conjugation in the Milnor basis, Proc. Amer. Math. Soc. 122 (1994), no. 2, 625–634. MR 1207540, DOI 10.1090/S0002-9939-1994-1207540-3
- Judith H. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), no. 2, 657–661. MR 1152292, DOI 10.1090/S0002-9939-1993-1152292-8 J. H. Silverman and W. Singer, On the action of Steenrod squares on polynomial algebras II, J. Pure Appl. Algebra (to appear).
- R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 307–309. MR 974986, DOI 10.1017/S0305004100067797
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 627-637
- MSC: Primary 55S10; Secondary 20J05, 55R40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254854-8
- MathSciNet review: 1254854