Linear tame extension operators from closed subvarieties of $\textbf {C}^ d$
HTML articles powered by AMS MathViewer
- by Aydın Aytuna
- Proc. Amer. Math. Soc. 123 (1995), 759-763
- DOI: https://doi.org/10.1090/S0002-9939-1995-1219717-2
- PDF | Request permission
Abstract:
In this note we show that a linear continuous and tame extension operator from the space of analytic functions on a closed irreducible subvariety V of ${\mathbb {C}^d}$ exists if and only if V is an algebraic variety.References
- Aydın Aytuna, Stein spaces $M$ for which ${\scr O}(M)$ is isomorphic to a power series space, Advances in the theory of Fréchet spaces (Istanbul, 1988) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 287, Kluwer Acad. Publ., Dordrecht, 1989, pp. 115–154. MR 1083561
- A. Aytuna, J. Krone, and T. Terzioğlu, Complemented infinite type power series subspaces of nuclear Fréchet spaces, Math. Ann. 283 (1989), no. 2, 193–202. MR 980593, DOI 10.1007/BF01446430
- P. B. Djakov and B. S. Mitiagin, The structure of polynomial ideals in the algebra of entire functions, Studia Math. 68 (1980), no. 1, 87–104. MR 583404, DOI 10.4064/sm-68-1-85-104
- Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198, DOI 10.1090/S0273-0979-1982-15004-2 L. Hörmander, An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1973. P. Lelong, Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, 1969.
- B. S. Mitjagin and G. M. Henkin, Linear problems of complex analysis, Uspehi Mat. Nauk 26 (1971), no. 4 (160), 93–152 (Russian). MR 0287297
- Walter Rudin, A geometric criterion for algebraic varieties, J. Math. Mech. 17 (1967/1968), 671–683. MR 0219750 A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502.
- Dietmar Vogt, Tame spaces and power series spaces, Math. Z. 196 (1987), no. 4, 523–536. MR 917235, DOI 10.1007/BF01160894 —, Über die Existenz von Ausdehnungsoperatoren für holomorphe Funktionen auf analytischen Mengen in ${C^n}$, preprint. V. P. Zahariuta, Isomorphisms of spaces of analytic functions, Soviet Math. Dokl. 22 (1980), 631-634.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 759-763
- MSC: Primary 46E10; Secondary 32C25, 46A04
- DOI: https://doi.org/10.1090/S0002-9939-1995-1219717-2
- MathSciNet review: 1219717