The finite fibre problem and an index formula for elementary operators
HTML articles powered by AMS MathViewer
- by Jörg Eschmeier and Mihai Putinar
- Proc. Amer. Math. Soc. 123 (1995), 743-746
- DOI: https://doi.org/10.1090/S0002-9939-1995-1219725-1
- PDF | Request permission
Abstract:
Let $J \subset L(K,H)$ be an operator ideal between Hilbert spaces, and let $S \in L{(H)^n},T \in L{(K)^n}$ be commuting tuples of continuous linear operators. It is shown that the elementary operator $R:J \to J,A \to \sum \nolimits _{i = 1}^n {{S_i}A{T_i}}$ determined by S and T satisfies the finite fibre property. As a consequence it follows that an index formula proved by L. Fialkow for elementary operators under the additional assumption of the finite fibre property holds true in general.References
- Raúl E. Curto, Spectral theory of elementary operators, Elementary operators and applications (Blaubeuren, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 3–52. MR 1183936
- Raúl E. Curto and Lawrence A. Fialkow, The spectral picture of $(L_A,R_B)$, J. Funct. Anal. 71 (1987), no. 2, 371–392. MR 880986, DOI 10.1016/0022-1236(87)90010-3
- Raúl E. Curto and Lawrence A. Fialkow, Elementary operators with $H^\infty$-symbols, Integral Equations Operator Theory 10 (1987), no. 5, 707–720. Toeplitz lectures 1987 (Tel-Aviv, 1987). MR 904485, DOI 10.1007/BF01195797
- J. Eschmeier, Analytic index formulas for tensor product systems, Proc. Roy. Irish Acad. Sect. A 87 (1987), no. 2, 121–135. MR 941707
- Jörg Eschmeier, Tensor products and elementary operators, J. Reine Angew. Math. 390 (1988), 47–66. MR 953676, DOI 10.1515/crll.1988.390.47
- A. S. Faĭnšteĭn, The joint essential spectrum of a family of linear operators, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 83–84 (Russian). MR 575225
- Lawrence A. Fialkow, The index of an elementary operator, Indiana Univ. Math. J. 35 (1986), no. 1, 73–102. MR 825629, DOI 10.1512/iumj.1986.35.35004
- Hans Grauert and Reinhold Remmert, Coherent analytic sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 265, Springer-Verlag, Berlin, 1984. MR 755331, DOI 10.1007/978-3-642-69582-7
- R. N. Levy, Algebraic and topological $K$-functors of commuting $n$-tuple of operators, J. Operator Theory 21 (1989), no. 2, 219–253. MR 1023314
- Mihai Putinar, Base change and the Fredholm index, Integral Equations Operator Theory 8 (1985), no. 5, 674–692. MR 813356, DOI 10.1007/BF01201709
- Florian-Horia Vasilescu, Analytic functional calculus and spectral decompositions, Mathematics and its Applications (East European Series), vol. 1, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1982. Translated from the Romanian. MR 690957
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 743-746
- MSC: Primary 47A13; Secondary 47A53, 47B47
- DOI: https://doi.org/10.1090/S0002-9939-1995-1219725-1
- MathSciNet review: 1219725