Axiomatization and undecidability results for metrizable betweenness relations
HTML articles powered by AMS MathViewer
- by Robert Mendris and Pavol Zlatoš
- Proc. Amer. Math. Soc. 123 (1995), 873-882
- DOI: https://doi.org/10.1090/S0002-9939-1995-1219728-7
- PDF | Request permission
Abstract:
Let d be a metric on a nonempty set A. The ternary betweenness relation ${T_d}$ induced by d on A is defined by \[ {T_d}(x,y,z) \Leftrightarrow d(x,y) + d(y,z) = d(x,z)\] for $x,y,z \in A$. Allowing the range of d to vary over some "reasonable" ordered additive algebraic structures (not just the real numbers), we will prove that the class $\mathcal {M}$ of all metrizable ternary structures, i.e., the class of all structures $(A,{T_d})$, where d is some metric on A, is an elementary class which can be axiomatized by a set of universal Horn sentences. Further, using an algorithm of linear programming, we will show that the first-order theory of $\mathcal {M}$ is recursively axiomatizable and its universal part is decidable. On the other hand, the theory of $\mathcal {M}$ is not finitely axiomatizable and the theory of finite members of $\mathcal {M}$ is hereditarily undecidable.References
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Leonard M. Blumenthal, Theory and applications of distance geometry, Oxford, at the Clarendon Press, 1953. MR 0054981
- Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR 648287, DOI 10.1007/978-1-4613-8130-3
- C. C. Chang and H. J. Keisler, Model theory, 3rd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990. MR 1059055
- Ju. L. Eršov, Problemy razreshimosti i konstruktivnye modeli, Matematicheskaya Logika i Osnovaniya Matematiki. [Monographs in Mathematical Logic and Foundations of Mathematics], “Nauka”, Moscow, 1980 (Russian). MR 598465
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- David Hilbert, Grundlagen der Geometrie, Thirteenth edition, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1987 (German). With supplementary material by Paul Bernays. MR 1109913
- V. M. Kopytov, Reshetochno uporyadochennye gruppy, Sovremennaya Algebra. [Modern Algebra], “Nauka”, Moscow, 1984 (Russian). MR 806956
- Karl Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75–163 (German). MR 1512479, DOI 10.1007/BF01448840
- M. Moszyńska, Theory of equidistance and betweenness relations in regular metric spaces, Fund. Math. 96 (1977), no. 1, 17–29. MR 461454, DOI 10.4064/fm-96-1-17-29
- Everett Pitcher and M. F. Smiley, Transitives of betweenness, Trans. Amer. Math. Soc. 52 (1942), 95–114. MR 7099, DOI 10.1090/S0002-9947-1942-0007099-3
- Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. MR 874114
- M. F. Smiley, A comparison of algebraic, metric, and lattice betweenness, Bull. Amer. Math. Soc. 49 (1943), 246–252. MR 8123, DOI 10.1090/S0002-9904-1943-07888-3
- Alfred Tarski, What is elementary geometry?, Proceedings of an International Symposium held at the Univ. of Calif., Berkeley, Dec. 26, 1957-Jan. 4, 1958, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1959, pp. 16–29. The axiomatic method; With special reference to geometry and Physics; Edited by L. Henkin, P. Suppes and A. Tarski. MR 0106185
- Robert L. Vaught, Remarks on universal classes of relational systems, Indag. Math. 16 (1954), 589–591. Nederl. Akad. Wetensch. Proc. Ser. A 57. MR 0066304, DOI 10.1016/S1385-7258(54)50076-4
- A. Wald, Axiomatik des Zwischenbegriffes in metrischen Räumen, Math. Ann. 104 (1931), no. 1, 476–484 (German). MR 1512681, DOI 10.1007/BF01457952
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 873-882
- MSC: Primary 03B25; Secondary 03B30, 03C52, 03C65, 03D35, 08A02
- DOI: https://doi.org/10.1090/S0002-9939-1995-1219728-7
- MathSciNet review: 1219728