The arc length of the lemniscate $\{\vert p(z)\vert =1\}$
HTML articles powered by AMS MathViewer
- by Peter Borwein
- Proc. Amer. Math. Soc. 123 (1995), 797-799
- DOI: https://doi.org/10.1090/S0002-9939-1995-1223265-3
- PDF | Request permission
Abstract:
We show that the length of the set \[ \left \{ {z \in \mathbb {C}:|\prod \limits _{i = 1}^n {(z - {\alpha _i})| = 1} } \right \}\] is at most $8\pi en$. This gives the correct rate of growth in a long-standing open problem of Erdös, Herzog, and Piranian and improves the previous bound of $74{n^2}$ due to Pommerenke.References
- George A. Baker Jr., Essentials of Padé approximants, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0454459
- P. Erdős, F. Herzog, and G. Piranian, Metric properties of polynomials, J. Analyse Math. 6 (1958), 125–148. MR 101311, DOI 10.1007/BF02790232
- P. Erdős, Extremal problems on polynomials, Approximation theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976) Academic Press, New York, 1976, pp. 347–355. MR 0477003
- Ch. Pommerenke, On some metric properties of polynomials with real zeros, Michigan Math. J. 6 (1959), 377–380. MR 109876, DOI 10.1307/mmj/1028998285
- Ch. Pommerenke, On some problems by Erdős, Herzog and Piranian, Michigan Math. J. 6 (1959), 221–225. MR 109875, DOI 10.1307/mmj/1028998227
- Ch. Pommerenke, On some metric properties of polynomials with real zeros. II, Michigan Math. J. 8 (1961), 49–54. MR 120350
- Ch. Pommerenke, On metric properties of complex polynomials, Michigan Math. J. 8 (1961), 97–115. MR 151580
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 0433364
- Elias Wegert and Lloyd N. Trefethen, From the Buffon needle problem to the Kreiss matrix theorem, Amer. Math. Monthly 101 (1994), no. 2, 132–139. MR 1259826, DOI 10.2307/2324361
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 797-799
- MSC: Primary 31A15; Secondary 26D05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1223265-3
- MathSciNet review: 1223265