A note on Hermitian operators on function spaces
HTML articles powered by AMS MathViewer
- by Toshiko Koide
- Proc. Amer. Math. Soc. 123 (1995), 765-769
- DOI: https://doi.org/10.1090/S0002-9939-1995-1223515-3
- PDF | Request permission
Abstract:
In this note we shall get concrete expressions of hermitian operators on a closed subspace of $C(\Omega )$ which contains constant functions and separates points of $\Omega$.References
- Earl Berkson and Ahmed Sourour, The Hermitian operators on some Banach spaces, Studia Math. 52 (1974), 33–41. MR 355668, DOI 10.4064/sm-52-1-33-41
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583, DOI 10.1017/CBO9781107359895
- F. F. Bonsall and J. Duncan, Numerical ranges. II, London Mathematical Society Lecture Note Series, No. 10, Cambridge University Press, New York-London, 1973. MR 0442682, DOI 10.1017/CBO9780511662515
- M. Cambern, Isometries of certain Banach algebras, Studia Math. 25 (1964/65), 217–225. MR 172129, DOI 10.4064/sm-25-2-217-225
- Michael Cambern and Vijay D. Pathak, Isometries of spaces of differentiable functions, Math. Japon. 26 (1981), no. 3, 253–260. MR 624212
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Krzysztof Jarosz and Vijay D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc. 305 (1988), no. 1, 193–206. MR 920154, DOI 10.1090/S0002-9947-1988-0920154-7
- K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961/62), 55–66. MR 140927, DOI 10.4064/sm-21-1-55-66
- W. P. Novinger, Linear isometries of subspaces of spaces of continuous functions, Studia Math. 53 (1975), no. 3, 273–276. MR 417770, DOI 10.4064/sm-53-3-273-276 T. Okayasu and M. Takagaki, Linear isometries of function spaces, RIMS. Kôkyûroku (Kyoto Univ.) 743 (1991), 130-140. (Japanese)
- V. D. Pathak, Linear isometries of spaces of absolutely continuous functions, Canadian J. Math. 34 (1982), no. 2, 298–306. MR 658967, DOI 10.4153/CJM-1982-019-7
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math. 38 (1971), 177–192. MR 308763, DOI 10.2140/pjm.1971.38.177
- Ashoke K. Roy, Extreme points and linear isometries of the Banach space of Lipschitz functions, Canadian J. Math. 20 (1968), 1150–1164. MR 236685, DOI 10.4153/CJM-1968-109-9
- K. W. Tam, Isometries of certain function spaces, Pacific J. Math. 31 (1969), 233–246. MR 415295, DOI 10.2140/pjm.1969.31.233
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 765-769
- MSC: Primary 47B38; Secondary 46E10, 46J99
- DOI: https://doi.org/10.1090/S0002-9939-1995-1223515-3
- MathSciNet review: 1223515