Dold manifolds with $(Z_ 2)^ k$-action
HTML articles powered by AMS MathViewer
- by R. J. Shaker
- Proc. Amer. Math. Soc. 123 (1995), 955-958
- DOI: https://doi.org/10.1090/S0002-9939-1995-1223520-7
- PDF | Request permission
Abstract:
Actions on Dold manifolds $P(m,{2^k})$ are constructed to determine the ideals $\mathcal {I}_{ \ast ,k}^{{2^k}}$ of cobordism classes in ${\mathcal {N}_ \ast }$ containing a representative admitting a ${({{\mathbf {Z}}_2})^k}$-action with fixed point set of codimension ${2^k}$.References
- Tammo tom Dieck, Fixpunkte vetauschbarer Involutionen, Arch. Math. (Basel) 21 (1970), 295–298 (German). MR 268901, DOI 10.1007/BF01220918 A. Dold, Erzeugende der Thomschen Algebra $\mathcal {N}$, Math. Z. 65 (1956), 23-35.
- Pedro L. Q. Pergher, $(Z_2)^k$-actions with fixed point set of constant codimension, Topology Appl. 46 (1992), no. 1, 55–64. MR 1177163, DOI 10.1016/0166-8641(92)90039-3
- R. J. Shaker Jr., Constant codimension fixed sets of commuting involutions, Proc. Amer. Math. Soc. 121 (1994), no. 1, 275–281. MR 1179592, DOI 10.1090/S0002-9939-1994-1179592-0
- R. E. Stong, On fibering of cobordism classes, Trans. Amer. Math. Soc. 178 (1973), 431–447. MR 315733, DOI 10.1090/S0002-9947-1973-0315733-3
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 955-958
- MSC: Primary 57S17; Secondary 57R75
- DOI: https://doi.org/10.1090/S0002-9939-1995-1223520-7
- MathSciNet review: 1223520