Base-invariance implies Benford’s law
HTML articles powered by AMS MathViewer
- by Theodore P. Hill PDF
- Proc. Amer. Math. Soc. 123 (1995), 887-895 Request permission
Abstract:
A derivation of Benford’s Law or the First-Digit Phenomenon is given assuming only base-invariance of the underlying law. The only base-invariant distributions are shown to be convex combinations of two extremal probabilities, one corresponding to point mass and the other a log-Lebesgue measure. The main tools in the proof are identification of an appropriate mantissa $\sigma$-algebra on the positive reals, and results for invariant measures on the circle.References
-
F. Benford, The law of anomalous numbers, Proc. Amer. Philos. Soc. 78 (1938), 551-572.
- Daniel I. A. Cohen, An explanation of the first digit phenomenon, J. Combinatorial Theory Ser. A 20 (1976), no. 3, 367–370. MR 406912, DOI 10.1016/0097-3165(76)90032-7
- Richard Durrett, Probability, The Wadsworth & Brooks/Cole Statistics/Probability Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991. Theory and examples. MR 1068527
- William Feller, An introduction to probability theory and its applications. Vol. I, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
- B. J. Flehinger, On the probability that a random integer has initial digit $A$, Amer. Math. Monthly 73 (1966), 1056–1061. MR 204395, DOI 10.2307/2314636
- Simon Newcomb, Note on the Frequency of Use of the Different Digits in Natural Numbers, Amer. J. Math. 4 (1881), no. 1-4, 39–40. MR 1505286, DOI 10.2307/2369148
- Roger S. Pinkham, On the distribution of first significant digits, Ann. Math. Statist. 32 (1961), 1223–1230. MR 131303, DOI 10.1214/aoms/1177704862 R. Raimi, The peculiar distribution of first significant digits, Sci. Amer. 221 (1969), 109-120.
- Ralph A. Raimi, The first digit problem, Amer. Math. Monthly 83 (1976), no. 7, 521–538. MR 410850, DOI 10.1080/00029890.1976.11994162
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 887-895
- MSC: Primary 60A10; Secondary 28D05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1233974-8
- MathSciNet review: 1233974