On the exponent of the ideal class group of $\textbf {Q}(\sqrt {-d})$
HTML articles powered by AMS MathViewer
- by Francesco Pappalardi
- Proc. Amer. Math. Soc. 123 (1995), 663-671
- DOI: https://doi.org/10.1090/S0002-9939-1995-1233979-7
- PDF | Request permission
Abstract:
Let $m(d)$ be the exponent of the ideal class group of ${\mathbf {Q}}(\sqrt { - d} )$, we establish the bound $m(d) \gg \frac {{\log d}}{{\log \log d}}$ for almost all the discriminants d by using uniform asymptotic formulas on the number of $n \leq x$ for which there exists a prime less than s for which n is a quadratic residue.References
- Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque, No. 18, Société Mathématique de France, Paris, 1974 (French). Avec une sommaire en anglais. MR 0371840
- David W. Boyd and H. Kisilevsky, On the exponent of the ideal class groups of complex quadratic fields, Proc. Amer. Math. Soc. 31 (1972), 433–436. MR 289454, DOI 10.1090/S0002-9939-1972-0289454-4
- Eckford Cohen, Remark on a set of integers, Acta Sci. Math. (Szeged) 25 (1964), 179–180. MR 169823
- C. Hooley, A note on square-free numbers in arithmetic progressions, Bull. London Math. Soc. 7 (1975), 133–138. MR 371799, DOI 10.1112/blms/7.2.133
- J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), no. 3, 271–296. MR 553223, DOI 10.1007/BF01390234 E. Landau, Primzahlen, Chelsea, New York, 1953.
- Karl Prachar, Über die kleinste quadratfreie Zahl einer arithmetischen Reihe, Monatsh. Math. 62 (1958), 173–176 (German). MR 92806, DOI 10.1007/BF01301288
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 663-671
- MSC: Primary 11R29; Secondary 11N69, 11R11, 11R47
- DOI: https://doi.org/10.1090/S0002-9939-1995-1233979-7
- MathSciNet review: 1233979