MENGER MANIFOLDS HOMEOMORPHIC TO THEIR n-HOMOTOPIE KERNELS

YUTAKA IWAMOTO

(Communicated by James West)

Abstract. We give a necessary and sufficient condition that an $(n + 1)$-dimensional Menger manifold (μ^{n+1}-manifold) is homeomorphic to its n-homotopy kernel. Such a μ^{n+1}-manifold is called a μ_∞^{n+1}-manifold. We also prove the following results:

1. Each homeomorphism between two Z-sets in a μ_∞^{n+1}-manifold M extends to an ambient homeomorphism of M onto itself if it is n-homotopic to id in M.

2. An n-homotopy equivalence between two μ_∞^{n+1}-manifolds is n-homotopic to a homeomorphism.

3. Each map from a μ_∞^{n+1}-manifold into a μ^{n+1}-manifold is n-homotopic to an open embedding.

Introduction

All spaces considered in this paper are assumed to be locally compact separable metrizable and maps are continuous. In [Be], Bestvina introduced Menger manifolds and established the characterization theorem of such manifolds. An $(n + 1)$-dimensional Menger manifold is a topological manifold modeled on the $(n + 1)$-dimensional universal Menger compactum μ^{n+1}, which is also called a μ^{n+1}-manifold. In [Ch3], Chigogidze introduced the notion of the n-homotopy kernel of a μ^{n+1}-manifold and proved the following classification theorem for μ^{n+1}-manifolds: Two μ^{n+1}-manifolds have the same n-homotopy type if and only if their n-homotopy kernels are homeomorphic. There are close relations between Hilbert cube manifold (Q-manifold) theory, and Menger manifold theory, and the n-homotopy kernel of a μ^{n+1}-manifold plays the role of the product $X \times [0, 1)$ of a Q-manifold X with $[0, 1)$. It is said that X is $[0, 1)$-stable if it is homeomorphic to $(\cong) X \times [0, 1)$.

Wong [Wo] showed that a Q-manifold X is $[0, 1)$-stable if and only if X is properly contractible to ∞; that is, for any compactum K in X there is a proper map $j_K : X \to X \setminus K$ which is properly homotopic to id_X. Replacing a proper homotopy with a proper n-homotopy, we have the notion of properly n-contractible to ∞. Moreover we say that X is properly locally (n)-contractible...
at \(\infty \) if for any compactum \(K \subset X \) there is a compactum \(L \subset X \) with \(K \subset L \) such that for each compactum \(L' \subset X \) with \(L \subset L' \) there exists a proper map \(j_{L'} : X \setminus L \to X \setminus L' \) which is properly \((n\text{-})\)homotopic to \(id_{X \setminus L} \) in \(X \setminus K \).

In this paper we define \(\mu_{\infty}^{n+1} \)\text{-}manifolds as \(\mu^{n+1} \)\text{-}manifolds which are properly \(n\text{-}contractible to \(\infty \) and properly locally \(n\text{-}contractible at \(\infty \) and show the following characterization theorem for \(\mu_{\infty}^{n+1} \)\text{-}manifolds.

Theorem I. Let \(M \) be a \(\mu_{\infty}^{n+1} \)\text{-}manifold. Then \(M \) is a \(\mu_{\infty}^{n+1} \)\text{-}manifold if and only if \(M \) is homeomorphic to its \(n\text{-}homotopy kernel \(\text{Ker}(M) \).

We will show that two \(n\text{-}homotopic proper maps into a \(\mu_{\infty}^{n+1} \)\text{-}manifold are properly \(n\text{-}homotopic (see Lemma 3.1). Thus we can remove the requirement of an \(n\text{-}homotopy between \(\mu_{\infty}^{n+1} \)\text{-}manifold to be proper, whence we obtain the following \(Z\text{-}set unknotting theorem for \(\mu_{\infty}^{n+1} \)\text{-}manifolds.

Theorem II. Each homeomorphism between two \(Z\text{-}sets in a \(\mu_{\infty}^{n+1} \)\text{-}manifold \(M \) extends to an ambient homeomorphism of \(M \) onto itself if it is \(n\text{-}homotopic to \(\text{id} \) in \(M \).

From Theorem 2.2 in [Ch3], it follows that two \(\mu_{\infty}^{n+1} \)\text{-}manifolds of the same \(n\text{-}homotopy type are homeomorphic. Similarly to [C1, Theorem 5], we can clarify the relation between \(n\text{-}homotopy equivalences and homeomorphisms, that is:

Theorem III. An \(n\text{-}homotopy equivalence between two \(\mu_{\infty}^{n+1} \)\text{-}manifolds is \(n\text{-}homotopic to a homeomorphism.

Moreover, similarly to \([0,1)\text{-}stable Q\text{-}manifolds [C1, Lemma 3.6], we can strengthen the open embedding theorem [Ch 2, Ch 3].

Theorem IV. Each map from a \(\mu_{\infty}^{n+1} \)\text{-}manifold into a \(\mu^{n+1} \)\text{-}manifold is \(n\text{-}homotopic to an open embedding.

1. Preliminaries

We say two (proper) maps \(f, g : X \to Y \) are (properly) \(n\text{-}homotopic (notation: \(f \simeq_n g \), \(f \simeq_p g \), respectively) if, for any (proper) map \(\alpha : Z \to X \) from a space \(Z \) with \(\dim Z \leq n \) into \(X \), the compositions \(f\alpha \) and \(g\alpha \) are (properly) homotopic in the usual sense. The notion of \(n\text{-}homotopy equivalence is defined in the obvious way.

Proposition 1.1 [Hu]. Let \(f : X \to Y \) be a map, where \(\dim X \leq n \) and \(Y \) is LC\(^n\). Then for any open cover \(\mathcal{U} \) of \(Y \), there are maps \(\phi : X \to P \) and \(\psi : P \to Y \) such that \(f \) and \(\psi\phi \) are \(\mathcal{U}\text{-}homotopic, where \(P \) is a locally finite polyhedron with \(\dim P \leq n \). In particular, we can choose \(\psi \) as a proper map.

Let us recall that a map \(f : X \to Y \) is said to be \(n\text{-}invertible \) if for any space \(Z \) with \(\dim Z \leq n \) and any map \(\alpha : Z \to Y \) there exists a map \(\beta : Z \to X \) such that \(f\beta = \alpha \).

Proposition 1.2 [Ch2]. Every \(\mu^{n+1} \)\text{-}manifold admits a proper \((n + 1)\text{-}invertible UV\(^n\)\text{-}surjection onto a Q\text{-}manifold.

Proposition 1.3 [Ch3]. Two \(\mu^{n+1} \)\text{-}manifolds admitting proper UV\(^n\)\text{-}surjections onto the same LC\(^n\)\text{-}space are homeomorphic.
The following theorem is due to Bestvina [Be], where it is stated in terms of \(\mu \)-homotopy. However, as is known [Ch1], the notion of \(\mu \)-homotopy coincides with one of \(n \)-homotopy for maps between locally compact \(LC^n \)-spaces of dimension at most \(n + 1 \).

Theorem 1.1 (Z-set unknotting theorem). Let \(M \) be a \(\mu^{n+1} \)-manifold and \(f : A \to B \) be a homeomorphism between Z-sets in \(M \). If \(f \simeq \mu \text{id}_A \) in \(M \), then \(f \) extends to a homeomorphism \(h : M \to M \).

An \(n \)-homotopy kernel of a \(\mu^{n+1} \)-manifold \(M \) is defined to be the complement \(M \setminus f(M) \) of the image of an arbitrary Z-embedding \(f : M \to M \) with \(f \simeq \mu \text{id}_M \). Using the Z-set unknotting theorem, two \(n \)-homotopy kernels are homeomorphic by an ambient homeomorphism of \(M \) onto itself. By \(\text{Ker}(M) \), we denote a representative of \(n \)-homotopy kernels of \(M \). The following proposition is actually proved in [Ch3].

Proposition 1.4. For each \(\mu^{n+1} \)-manifold \(M \) there exists a proper \((n + 1) \)-invertible \(UV^n \)-surjection \(f_n : \mu^{n+1} \to Q \) satisfying the following condition:

\[(*) \quad f_n^{-1}(X) \text{ is a } \mu^{n+1} \text{-manifold for any locally compact } LC^n \text{-space } X \subset Q.\]

Theorem 1.2 [Dr]. There exists an \((n+1) \)-invertible \(UV^n \)-surjection \(f_n : \mu^{n+1} \to Q \) satisfying the following condition:

\[(*) \quad f_n^{-1}(X) \text{ is a } \mu^{n+1} \text{-manifold for any locally compact } LC^n \text{-space } X \subset Q.\]

Theorem 1.3 [Ch4]. For each locally finite polyhedron \(K \), there exists a proper \((n + 1) \)-invertible \(UV^n \)-surjection \(f_K : M_K \to K \) from a \(\mu^{n+1} \)-manifold \(M_K \) onto \(K \) satisfying the following conditions:

(a) \(f_K^{-1}(L) \text{ is a } \mu^{n+1} \text{-manifold for any closed subpolyhedron } L \text{ of } K; \)
(b) \(f_K^{-1}(Z) \text{ is a Z-set in } f_K^{-1}(L) \text{ for any Z-set } Z \text{ in a closed subpolyhedron } L \text{ of } K.\)

Let \(f : X \to Y \) be a proper map. We say that \(f \) induces an epimorphism of \(j \)-th homotopy groups of ends if for every compactum \(C \subset Y \) there exists a compactum \(K \subset Y \) such that for each point \(x \in X \setminus f^{-1}(K) \) and every map \(\alpha : (S^j, *) \to (Y \setminus K, f(x)) \) there exist a map \(\hat{\alpha} : (S^j, *) \to (X \setminus f^{-1}(C), x) \) and a homotopy \(f\hat{\alpha} \simeq \alpha \text{ rel. } \ast \text{ in } Y \setminus C. \) Also we say that \(f \) induces a monomorphism of \(j \)-th homotopy groups of ends if for every compactum \(C \subset Y \) there exists a compactum \(K \subset Y \) such that for every map \(\hat{\alpha} : S^j \to X \setminus f^{-1}(K) \) with \(f\hat{\alpha} \simeq \ast \text{ in } Y \setminus K \) it follows that \(\hat{\alpha} \simeq \ast \text{ in } X \setminus f^{-1}(C). \) It is said that \(f \) induces an isomorphism of \(j \)-th homotopy groups of ends if \(f \) induces both the epimorphism and monomorphism of \(j \)-th homotopy groups of ends.

Theorem 1.4 [Be]. Let \(f : M \to N \) be a proper map between \(\mu^{n+1} \)-manifolds. If \(f \) induces an isomorphism of homotopy groups of \(\text{dim } \leq n \) and an isomorphism of homotopy groups of ends of \(\text{dim } \leq n \), then \(f \) is properly \(n \)-homotopic to a homeomorphism.

2. Characterization of \(\mu_{\infty}^{n+1} \)-manifolds

A space \(X \) is said to be properly \((n-) \)-contractible to \(\infty \) if for any compactum \(K \) in \(X \) there exists a proper map \(j_K : X \to X \setminus K \) which is properly
If for any compactum $K \subset X$ there exists a compactum $L \subset X$ with $K \subset L$ such that for each compactum $L' \subset X$ with $L \subset L'$ there exists a proper map $j_{L'} : X \setminus L \to X \setminus L'$ which is properly (n)-homotopic to $\text{id}_{X \setminus L}$ in $X \setminus K$, then a space X is said to be properly locally (n)-contractible at ∞. It is easy to see that for any space X, $X \times [0, 1)$ is properly contractible to ∞ and properly locally contractible at ∞.

Lemma 2.1. Let X be properly n-contractible to ∞ and properly locally n-contractible at ∞. Then for each compact cover $\{X_i\}_{i \in \omega}$ of X with $X_i \subset \text{int} X_{i+1}$, there exist a subcover $\{X_{ik}\}_{k \in \omega}, 0 = i_0 < i_1 < i_2 < \cdots$ and a collection of proper maps $\{f_k : X \to X \setminus X_{ik}\}_{k \in \omega}$ such that $f_0 = \text{id}_X$ and $f_{k-1} \simeq^n_p f_k$ in $X \setminus X_{ik-2}$ for $k \geq 1$, where $X_{i_{-1}} = \emptyset$.

Proof. For technical reasons we assume that $X_0 = \emptyset$. Let $L_{-2} = L_{-1} = L_0 = \emptyset$. We shall inductively choose integers $0 = i_2 = i_{-1} = i_0 < i_1 < i_2 < \cdots$ and construct compacta $L_{k-1} \subset X_{ik} \subset L_k$ and proper maps $j_k : X \setminus L_{k-2} \to X \setminus X_{ik}$, $k \in \omega$, satisfying the following conditions:

1. $j_0 = \text{id}_X$.
2. For each compactum $M \supset L_k$ there is a proper map $j_M : X \setminus L_k \to X \setminus M$ such that $j_M \simeq^n p \text{id}_{X \setminus L_k}$ in $X \setminus X_{ik-2}$.
3. $j_k \simeq^n p \text{id}_{X \setminus L_{k-2}}$ in $X \setminus X_{ik-2}$.

Let $i_1 = 1$. Since X is properly n-contractible to ∞ and properly locally n-contractible at ∞, there exist a proper map $j_1 : X \to X \setminus X_i$ with $j_1 \simeq^n p \text{id}$ and a compactum $L_1 \supset X_1$ satisfying (2). Since $X = \bigcup_{i \in \omega} X_i$ and $X_i \subset \text{int} X_{i+1}$, there exists $i_2 > i_1$ such that $X_{i_2} \supset L_1$. As in the above arguments there exist a proper map $j_2 : X \to X \setminus X_{i_2}$ with $j_2 \simeq^n p \text{id}_X$ and a compactum $L_2 \supset X_{i_2}$ satisfying (2).

Assume that, for $k \geq 2$, $i_0 < i_1 < \cdots < i_k$, L_k, and $j_k : X \setminus L_{k-2} \to X \setminus X_{ik}$ have been constructed. Choose $i_{k+1} > i_k$ so that $X_{ik+1} \supset L_k$. Since $X_{ik+1} \supset L_{k-1}$, by the property (2) of L_{k-1}, there exists a proper map $j_{X_{ik+1}} : X \setminus L_{k-1} \to X \setminus X_{ik+1}$ such that $j_{X_{ik+1}} \simeq^n p \text{id}_{X \setminus L_{k-2}}$ in $X \setminus X_{ik-1}$. Then put $j_{k+1} = j_{X_{ik+1}}$. Since X is properly locally n-contractible at ∞, there exists a compactum $L_{k+1} \supset X_{ik+1}$, satisfying (2).

Now define $f_k = j_k \cdots j_0 : X \to X \setminus X_k$ for $k \in \omega$ and observe that the collections of compacta $\{X_{ik}\}_{k \in \omega}$ and maps $\{f_k\}_{k \in \omega}$ are as desired. \square

As is stated in the introduction, a $\mu_{\infty+1}$-manifold is a μ^{n+1}-manifold which is properly n-contractible to ∞ and properly locally n-contractible at ∞. Theorem I is contained in the following.

Theorem 2.1 (Characterization). For a μ^{n+1}-manifold M the following conditions are equivalent:

1. M is a $\mu_{\infty+1}$-manifold.
2. $M \cong \text{Ker}(M)$.
3. There is a proper $(n+1)$-invertible UV^n-surjection $f : M \to X$ onto some $[0, 1)$-stable Q-manifold X.
4. There is a proper $(n+1)$-invertible UV^n-surjection $g : M \to Y$ onto a space Y which is properly n-contractible to ∞ and properly locally n-contractible at ∞.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. We shall prove that \((1) \Rightarrow (2)\). First we shall choose a compact cover \(\{M_i\}_{i \in \omega}\) of \(M\) with \(M_i \subset \text{int} M_{i+1}\), \(i \in \omega\), such that the topological frontier \(\text{Fr} M_i\) is a \(Z\)-set in \(M \setminus \text{int} M_i\). To this end, fix a proper \(UV^n\)-surjection \(g : M \to X\) onto a \(Q\)-manifold \(X\). Then choose a compact cover \(\{X_i\}_{i \in \omega}\) of \(X\) consisting of \(Q\)-manifold with \(X_i \subset \text{int} X_{i+1}\) such that \(\text{Fr} X_i\) is a \(Z\)-set in both \(X_i\) and \(X \setminus \text{int} X_i\), \(i \in \omega\) (see [C2, CS]). For each \(i \in \omega\), by the relative triangulation theorem for \(Q\)-manifolds [C3], we may assume that \(X = P \times Q\), \(X_i = P_i \times Q\), and \(X \setminus \text{int} X_i = P_i' \times Q\) for a locally finite polyhedron \(P\) and closed subpolyhedra \(P_i', P_i'' \subset P\). Let \(f_P : M_P \to P\) be a proper \(UV^n\)-surjection from a \(\mu^{n+1}\)-manifold \(M_P\) onto \(P\) satisfying condition (b) in Theorem 1.3. Since the composition \(\pi_P g : M \to P\) is proper \(UV^n\) (where \(\pi_P : P \times Q \to P\) is the canonical projection), there is a homeomorphism \(k : M_P \to M\) by Proposition 1.3. Then by property (b) of \(f_P\), \(f_P^{-1}(P_i' \cap P_i'')\) is a \(Z\)-set in \(f_P^{-1}(P_i')\) and so is the topological frontier of \(f_P^{-1}(P_i')\). Now let \(M_i = k f_P^{-1}(P_i')\), \(i \in \omega\). Then the compact cover \(\{M_i\}_{i \in \omega}\) of \(M\) is the required one.

By Lemma 2.1, there is a collection of maps \(\{f_i : M \to M \setminus M_i\}_{i \in \omega}\) such that \(f_0 = \text{id}_M\), \(f_i \simeq f_{i+1}\) in \(M \setminus M_{i+1}\) for \(i \in \omega\). Using the \(Z\)-embedding approximation theorem for \(\mu^{n+1}\)-manifolds [Be, 2.3.8], we can choose \(f_i\) as a \(Z\)-embedding for each \(i \in \omega\). Put \(K_i = M \setminus f_i(M)\) for \(i \geq 1\). Then since \(f_i \simeq \text{id}_M\), the definition of \(n\)-homotopy kernels, we have \(K_i \cong \text{Ker}(M)\).

By Theorem 1.1, since \(f_i \simeq f_{i+1}\) is in \(M \setminus M_{i+1}\) and \(\text{Fr} M_{i+1}\) is a \(Z\)-set in \(M \setminus \text{int} M_{i+1}\), there exists a homeomorphism \(h_i : M \to M\) such that \(h_i \circ f_i = f_{i+1}\) and \(h_i|_{M_{i+1}} = \text{id}_M\). Note that \(h_i(K_i) = K_{i+1}\). Now we define \(h : K_1 \to M\) by \(h = \lim_{i \to \infty} h_1 \cdots h_i\). Then \(h|_{K_i}(M_i) = h_{i+2} \cdots h_i|_{M_i}\). In fact, suppose that \(h(x) \neq h_{i+2} \cdots h_i(x)\) for some \(x \in h^{-1}(M_i)\). Then there is an open subset \(U\) of \(\text{int} M_i\) such that \(h(x) \not\in U \subset M_i\) and \(h_{i+2} \cdots h_i(x) \not\in U\). This contradicts the definition of \(h\).

One can easily see that \(h\) is injective. Moreover, since \(M = \bigcup_{i \in \omega} M_i\) and \(h_1 \cdots h_i(K_i) = K_i \supset M_i\), it follows that \(h\) is surjective. To finish the proof, it only remains to note that \(h\) is open. Thus \(h\) is a homeomorphism.

To prove \((2) \Rightarrow (3)\), assume \(M \cong \text{Ker}(M)\). Then, by Proposition 1.4, there is a proper \((n+1)\)-invertible \(UV^n\)-surjection \(g : M \to M \times [0, 1)\). Let \(h : M \to Y\) be a proper \(UV^n\)-surjection onto a \(Q\)-manifold \(Y\) (Proposition 1.2). Since \(Y \times [0, 1)\) is a \([0, 1)\)-stable \(Q\)-manifold, the composition \((h \times \text{id}_{[0, 1)\})g : M \to Y \times [0, 1)\) is the required one.

\((3) \Rightarrow (4)\) is trivial.

Finally we shall show that \((4) \Rightarrow (1)\). Let \(h : M \to X\) be a proper \((n+1)\)-invertible \(UV^n\)-surjection onto a space \(X\) properly \(n\)-contractible to \(\infty\) and properly locally \(n\)-contractible at \(\infty\). Let \(K\) be a compactum in \(M\). Then there exists a compactum \(L'\) in \(X\) with \(h(K) \subset L'\) such that for each compactum \(F'\) with \(L' \subset F'\) there exist proper maps \(h_{(K)} : X \setminus h(K)\) and \(j_{F'} : X \setminus L' \to X \setminus F'\) such that \(h_{(K)} \simeq \text{id}\) in \(X\) and \(j_{F'} \simeq \text{id}\) in \(X \setminus L'\). Let \(L = h^{-1}(L')\) and \(F\) be a compactum containing \(L\). Since \(h\) is proper \((n+1)\)-invertible, there exist proper maps \(i_K : M \to M \setminus K\) and \(j_F : M \setminus L \to M \setminus F\) such that \(hi_K = i'_K h\) and \(hj_F = j'_F h\).
Consider a proper map \(\alpha : Z \to M \setminus L \) (\(\subset M \setminus h^{-1}(h(K)) \)), where \(\dim Z \leq n \). We shall now show that \(j_F \alpha \) is properly homotopic to \(\alpha \) in \(M \setminus K \). From Proposition 1.1, we may assume without loss of generality that \(Z \) is a locally finite polyhedron. Let \(H : (X \setminus L') \times [0, 1] \to X \setminus h(K) \) be a proper homotopy from \(\text{id}_{X \setminus L'} \) to \(j_h(F') \). Then \(H(h \alpha \times \text{id}) : Z \times [0, 1] \to X \setminus h(K) \) is a proper homotopy from \(h \alpha \) to \(j_h(F')h \alpha = j_F h \alpha \). Since \(h |_{M \setminus h^{-1}(h(K))} : M \setminus h^{-1}(h(K)) \to X \setminus h(K) \) is proper \(UV^n \), by [La, §3, Lemma A], there exists a proper homotopy \(F : Z \times [0, 1] \to M \setminus h^{-1}(h(K)) \) from \(\alpha \) to \(j_F \alpha \). Thus \(j_F \simeq_{id} \text{id}_{M \setminus L} \) in \(M \setminus K \). Similarly, we can conclude \(i_F \simeq_{id} \text{id}_M \). \(\square \)

3. PROOFS OF THEOREMS II, III, AND IV

Lemma 3.1. Let \(f : X \to Y \) be a map from a locally compact space \(X \) into a \(LC^n \)-space \(Y \) admitting a proper \((n + 1)\)-invertible \(UV^n \)-surjection onto a space \(Y \times [0, 1] \). Then \(f \) is \(n \)-homotopic to a proper map whenever \(\dim X \leq n + 1 \). Moreover, if \(f \) is a proper map \(n \)-homotopic to a proper map \(g : X \to Y \), then \(f \simeq_n g \).

Proof. Fix a proper map \(p : X \to [0, 1] \), and let \(h : Y \to Y \times [0, 1] \) be a proper \((n + 1)\)-invertible \(UV^n \)-surjection. Let \(q : X \to Y \times [0, 1] \) be the map defined by \(q(x) = (h_{1}(f(x), p(x))) \), where \(h(x) = (h_{1}(x), h_{2}(x)) \), \(x \in X \). Then \(q \) is proper and homotopic to \(h f \). By the \((n + 1)\)-invertibility of \(h \), there is a map \(f' : X \to Y \) such that \(h f' = q \). Note that \(f' \) is proper and \(h f' \simeq h f \). Thus by the lifting property of \(h \) [La, §3, Lemma A], we conclude that \(f \simeq_n f' \).

Next suppose that \(f \) is a proper map \(n \)-homotopic to a proper map \(g : X \to Y \). Let \(\alpha : Z \to X \) be a proper map, where \(\dim Z \leq n \). We shall show that \(f \alpha \simeq_p g \alpha \). By Proposition 1.1, we may assume without loss of generality that \(Z \) is a locally finite polyhedron. Let \(\{Y_i\}_{i \in \omega} \) be a compact cover of \(Y \) with \(Y_0 = \emptyset \) and \(Y_i \subset \text{int} Y_{i+1}, i \in \omega \). Then for each \(i \geq 1 \), let \(Z_i \) be a compact subpolyhedron of \(Z \) such that \((h f \alpha)^{-1}(W_i) \cup (h g \alpha)^{-1}(W_i) \subset Z_i \subset \text{int} Z_{i+1} \), where \(Z_0 = \emptyset \) and \(Z_1 = Y_1 \times [0, 1 - 2^{-i}] \). Since \(f \simeq_n g \), we can fix a homotopy \(G_0 : Z \times [0, 1] \to Y \) from \(f \alpha \) to \(g \alpha \). For \(k \geq 1 \), we shall inductively construct a homotopy \(G_k : (Z \setminus \text{int} Z_{k+1}) \times [0, 1] \to Y \setminus h^{-1}(W_{2k+1}) \) from the restriction \(f \alpha |_A \) to the one \(g \alpha |_B \) satisfying the following conditions:

\((1)_k \) \hspace{1cm} \(G_k((Z \setminus \text{int} Z_{2k}) \times [0, 1]) \subset Y \setminus h^{-1}(W_{2k-2}) \);

\((2)_k \) \hspace{1cm} \(G_k = G_{k-1} \) on \(\text{Fr} Z_{2k-2} \times [0, 1] \).

Let \(F_i : [0, 1] \to [1 - 2^{-i}, 1] \) be the map defined by \(F_i(t) = 1 + (t - 1)2^{-i} \) for each \(i \geq 1 \). Suppose that a homotopy \(G_k : (Z \setminus \text{int} Z_{k+1}) \times [0, 1] \to Y \setminus h^{-1}(W_{2k+1}) \) has been constructed for \(k \in \omega \). Then let \(A_{k+1} = (Z \setminus \text{int} Z_{2k+1}) \setminus \{0, 1\} \cup \text{Fr} Z_{2k+1} \times [0, 1] \) and \(B_{k+1} = (h_g \alpha)^{-1}(W_{2k+1}) \cap (Z \setminus \text{int} Z_{2k+2}) \times [0, 1] \). Since \(A_{k+1} \) and \(B_{k+1} \) are disjoint closed, we can choose \(\beta : (Z \setminus \text{int} Z_{2k+1}) \setminus \{0, 1\} \to [0, 1] \) such that \(\beta(A_{k+1}) = 0 \) and \(\beta(B_{k+1}) = 1 \). Define \(G'_{k+1} : (Z \setminus \text{int} Z_{2k+1}) \times [0, 1] \to Y \setminus h^{-1}(W_{2k+1}) \) by

\(G'_{k+1}(w) = (s_k(w), (1 - \beta(w))t_k(w) + \beta(w)F_{k+1}t_k(w)) \),

where \(h_g \alpha(w) = (s_k(w), t_k(w)), w \in (Z \setminus \text{int} Z_{2k}) \times [0, 1] \). By the lifting property [La], there is a homotopy \(G_{k+1} : (Z \setminus \text{int} Z_{2k+1}) \times [0, 1] \to Y \setminus W_{2k-3} \) from \(f \alpha \) to \(g \alpha \) with \(h_g \alpha = G'_{k+1} \) and \(G_{k+1} = G_k \) on \(A_{k+1} \) (i.e., satisfying \((2)_{k+1} \)) such that \(G_{k+1} \) satisfies \((1)_{k+1} \).
We define $H : Z \times [0, 1] \to Y$ by $H = G_k$ on each $(Z_{2k} \setminus \text{int } Z_{2k-2}) \times [0, 1]$. Then H is a well-defined homotopy from $f\alpha$ to $g\alpha$. Note that since h is proper, $\{h^{-1}(W_i)\}_{i \in \omega}$ is a compact cover of Y with $h^{-1}(W_i) \subset \text{int } h^{-1}(W_{i+1})$. Thus it follows from our construction that H is proper. The proof is finished. □

Proof of Theorem II. The theorem directly follows from Theorem 1.1 and Lemma 3.1. □

Lemma 3.2. If $f : M \to N$ is a proper n-homotopy equivalence between μ^{n+1}_∞-manifolds, then f induces an isomorphism of homotopy groups of ends of dim $\leq n$.

Proof. By Theorem 2.1, we can fix proper $(n+1)$-invertible UV^n-surjections $g : M \to X \times [0, 1)$ and $h : N \to Y \times [0, 1)$, where X and Y are some Q-manifolds. Let C be a compactum in N. Then there is a compactum $C'' \subset Y$ such that $C'' \times [0, t'] \supset h(C)$ for some $t' \in (0, 1)$. Since h is proper, $C' = h^{-1}(C'' \times [0, t'])$ is a compactum with $C' \supset C$. Note that, since f is proper, $g(f^{-1}(C'))$ is a compactum in $X \times [0, 1)$. Thus there exists $t_1 \in (0, 1)$ such that $L = \pi_X(g(f^{-1}(C')) \times [0, t_1]) \supset g(f^{-1}(C'))$, where $\pi_X : X \times [0, 1) \to X$ is the canonical projection. Similarly, since g is proper, there exists $t_2 \in (0, 1)$ such that $K' = \pi_Y(h(f(g^{-1}(L))) \times [0, t_2]) \supset h(f(g^{-1}(L)))$, where $\pi_Y : Y \times [0, 1) \to Y$ is the canonical projection. Put $K = h^{-1}(K')$, and let $x_0 \in M \setminus f^{-1}(K)$, $j \leq n$, and $a : (S^j, *) \to (N \setminus K, f(x_0))$. Since f is an n-homotopy equivalence, there exists $a_1 : (S^j, *) \to (M, x_0)$ such that $f\alpha_1 \simeq a$ rel. \ast. Since $a_1^{-1}(x_0)$ and $a_1^{-1}(L)$ are disjoint closed sets in S^j, we can choose a map $\beta : S^j \to [0, 1)$ such that $\beta(a_1^{-1}(x_0)) = 0$ and $\beta(a_1^{-1}(L)) = 1$. Say $g(a_1(x)) = (\pi_X g(a_1(x)), t(x)) \in X \times [0, 1)$, $x \in S^j$. Define $a_2 : (S^j, *) \to (X \times [0, 1), g(x_0))$ by

$$a_2(x) = (\pi_X g a_1(x), (1 - t_1) \cdot t(x) + t_1) \beta(x) + (1 - \beta(x) \cdot t(x)),$$

$x \in S^j$. Clearly $a_2 \simeq a_1$ rel. \ast and $a_2(S^j) \cap L = \emptyset$. Using the lifting property [La] of the proper UV^n-surjection g, there exists $\tilde{a} : (S^j, *) \to (M, x_0)$ such that $\text{img } \tilde{a} \cap L = \emptyset$ and $\tilde{a} \simeq a_1$ rel. \ast. Hence we have $f\tilde{a} \simeq a$ rel. \ast and $f\tilde{a}(S^j) \cap C' = \emptyset$. By the same technique we performed above, we can choose a homotopy so that $f\tilde{a} \simeq a$ rel. \ast in $N \setminus C$.

Next let $\gamma : S^j \to M \setminus f^{-1}(K)$ be a map such that $f\gamma \simeq \ast$ in $N \setminus K$. Since f is an n-homotopy equivalence, $g\gamma \simeq \ast$ in $X \times [0, 1)$. By sliding the $(0, 1)$-factor of the homotopy upward as the above, we have $g\gamma \simeq \ast$ in $X \times [0, 1) \setminus L$. By the lifting property of g [La], it follows that $\gamma \simeq \ast$ in $X \setminus f^{-1}(C)$. Thus we conclude that f induces an isomorphism of homotopy groups of ends of dim $\leq n$. □

Proof of Theorem III. Let $f : M \to N$ be an n-homotopy equivalence between μ^{n+1}_∞-manifolds. Then by Lemma 3.1 there is a proper map $h : M \to N$ such that $f \simeq h$; consequently, h is a proper n-homotopy equivalence. By Lemma 3.2 and Theorem 1.4, h is properly n-homotopic to a homeomorphism. Thus f is n-homotopic to a homeomorphism. □
Proof of Theorem IV. Let \(f : M \to N \) be a map from a \(\mu_\infty^{n+1} \)-manifold to a \(\mu_\infty^{n+1} \)-manifold. By replacing \(N \) with \(\text{Ker}(N) \), we may assume that \(N \) is also a \(\mu_\infty^{n+1} \)-manifold. By the triangulation theorem for \(\mu_\infty^{n+1} \)-manifold [Dr], we can fix proper \((n + 1)\)-invertible \(UV^n \)-surjections \(g : M \to K \) and \(h : N \to L \), where \(K \) and \(L \) are locally finite polyhedra of dimension at most \(n + 1 \). Then by the \((n + 1)\)-invertibility, \(g \) has a section \(p : K \to M \) (i.e., \(gp = \text{id}_K \)). Since \(N \) is a \(\mu_\infty^{n+1} \)-manifold, by Lemma 3.1, \(f \) is \(n \)-homotopic to a proper map \(f' : M \to N \). Then \(\phi = hf'p : K \to L \) is a proper map. Let \(M(\phi) \) be the mapping cylinder of \(\phi \), that is, a space obtained from the disjoint union \(K \times [0, 1] \oplus L \) by identifying \((x, 1) \) with \(\phi(x), x \in K \). Define \(c_\phi : M(\phi) \to L \) by \(c_\phi(x, t) = \phi(x), x \in K \). Let \(f_n : \mu^{n+1} \to Q \) be a proper \((n + 1)\)-invertible \(UV^n \)-surjection satisfying the condition \((\ast)\) in Theorem 1.2. Embed \(M(\phi) \) into \(Q \), whence \(f_{n-1}(M(\phi)) \) is a \(\mu^{n+1} \)-manifold. We denote the restriction of \(f_n \) to \(f_{n-1}(M(\phi)) \) by \(f_n \). Observe that \(f_{n-1}(K \times \{0\}) \cong M \) and \(f_{n-1}(L) \cong N \) by Proposition 1.3. We identify \(f_{n-1}(K \times \{0\}), f_{n-1}(L) \) with \(M, N \) respectively. Abusing notation, by \(g : M \to K \times \{0\}, h : N \to L \) we denote the restrictions of \(f_n \) to \(M, N \) respectively. Using the \((n + 1)\)-invertibility of \(h \), we can fix a section \(q : L \to N \) of \(h \). Note that since \(c_\phi f_n : f_{n-1}(M(\phi)) \to L \) and \(h : N \to L \) are proper \(UV^n \)-surjections, \(f_{n-1}(M(\phi)) \cong N \) by Proposition 1.3. Observe that the map \(q c_\phi f_n \) is an \(n \)-homotopy equivalence between \(\mu_\infty^{n+1} \)-manifolds \(f_{n-1}(M(\phi)) \) and \(N \). Then by Theorem III, there is a homeomorphism \(s : f_{n-1}(M(\phi)) \to N \) such that \(s \cong^n q c_\phi f_n \). Note that \(M' = f_{n-1}(K \times \{0, 1\}) \) is open in \(f_{n-1}(M(\phi)) \) and is a \(\mu_\infty^{n+1} \)-manifold by Theorem 2.1. Since the inclusion \(i : M = f_{n-1}(K \times \{0\}) \hookrightarrow M' \) is an \(n \)-homotopy equivalence, by Theorem III, we can choose a homeomorphism \(r : M \to M' \) with \(r \cong^n i \). Then the map \(sr : M \to N \) is an open embedding which is \(n \)-homotopic to \(q c_\phi(f_n)i = q\phi g = qh f'p g \). Since \(pg \cong^n p \text{id}_M \) and \(qh \cong^n p \text{id}_N \), we have \(qhf'p g \cong^n f' \cong^n f \). The proof is finished. \(\square \)

Acknowledgment

The author would like to thank Professor K. Sakai for his valuable suggestions.

References

Institute of Mathematics, University of Tsukuba, Tsukuba-city, Ibaraki, 305 Japan
E-mail address: iwamoto@akura.cc.tsukuba.ac.jp