Numerical meshes and covering meshes of approximate inverse systems of compacta
HTML articles powered by AMS MathViewer
- by Tadashi Watanabe
- Proc. Amer. Math. Soc. 123 (1995), 959-962
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254858-5
- PDF | Request permission
Abstract:
Mardešić and Rubin (1989) introduced approximate inverse systems of metric compacta by the conditions ${({\text {A}}1)^ \ast } - {({\text {A}}3)^ \ast }$. Mardešić and Watanabe (1988) introduced approximate inverse systems of topological spaces by the conditions $({\text {A}}1) - ({\text {A}}3)$. In this note we show that any approximate inverse system of metric compacta satisfies $({\text {A}}1) - ({\text {A}}3)$ if and only if it satisfies ${({\text {A}}1)^\ast } - {({\text {A}}3)^\ast }$ for some matrices (see Theorem 1).References
- Sibe Mardešić and Leonard R. Rubin, Approximate inverse systems of compacta and covering dimension, Pacific J. Math. 138 (1989), no. 1, 129–144. MR 992178, DOI 10.2140/pjm.1989.138.129
- Sibe Mardešić and Leonard R. Rubin, Cell-like mappings and nonmetrizable compacta of finite cohomological dimension, Trans. Amer. Math. Soc. 313 (1989), no. 1, 53–79. MR 962284, DOI 10.1090/S0002-9947-1989-0962284-0 S. Mardešić, L. R. Rubin, and N. Uglešić, A note on approximate systems of metric compacta, preprint.
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- Sibe Mardešić and Jack Segal, Stability of almost commutative inverse systems of compacta, Topology Appl. 31 (1989), no. 3, 285–299. MR 997496, DOI 10.1016/0166-8641(89)90025-4
- S. Mardešić and T. Watanabe, Approximate resolutions of spaces and mappings, Glas. Mat. Ser. III 24(44) (1989), no. 4, 587–637 (English, with Serbo-Croatian summary). MR 1080085 S. Mardešić and N. Uglešić, Approximate inverse systems which admit meshes, preprint.
- Keiô Nagami, Dimension theory, Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970. With an appendix by Yukihiro Kodama. MR 0271918
- J. Segal and T. Watanabe, Cosmic approximate limits and fixed points, Trans. Amer. Math. Soc. 333 (1992), no. 1, 1–61. MR 1145962, DOI 10.1090/S0002-9947-1992-1145962-2
- Tadashi Watanabe, Approximative shape. I. Basic notions, Tsukuba J. Math. 11 (1987), no. 1, 17–59. MR 899720, DOI 10.21099/tkbjm/1496160501
- Tadashi Watanabe, Approximate resolutions and covering dimension, Topology Appl. 38 (1991), no. 2, 147–154. MR 1094547, DOI 10.1016/0166-8641(91)90081-V
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 959-962
- MSC: Primary 54B35; Secondary 54F45
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254858-5
- MathSciNet review: 1254858