REPRESENTATION OF A COMPLETELY BOUNDED
BIMODULE MAP

QIYUAN NA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In this paper, we give a representation for a completely bounded
$A - B$ bimodule map into $B(H)$, where A and B are unital operator sub-
algebras of $B(H)$. When A and B are C^*-subalgebras we give a new proof
of the Wittstock's theorem by using this representation. We also prove that a
von Neumann algebra is an injective operator bimodule over its unital operator
algebras if and only if it is a finitely injective operator bimodule.

1. INTRODUCTION

An operator space is a L^∞-matricially normed space (see [12]). A unital op-
erator algebra is an operator space and is also a unital algebra with completely
contractive multiplication (see [2]). An operator bimodule over two unital operator
algebras is an operator space and is also a unital bimodule with completely
contractive multiplication (see [3]). While there is an extensive literature on the
representation of completely bounded and related types of linear maps (see [1,
3,7–10], and others), there has been relatively little done in the way of represen-
tating completely bounded bimodule maps. One notable exception is Smith's
representation of completely bounded bimodule maps from $K(H)$ into $B(H)$.
This paper shows in particular that M_6 is not an injective operator bimodule
over a pair of unital operator subalgebras of M_6 (see [14]). We are motivated
by this fact to study the representation of completely bounded bimodule maps
and the injectivity of $B(H)$ as an operator bimodule.

In §2, we first give a representation for a completely bounded $A - B$ bimodule
map into $B(H)$ when A and B are C^*-subalgebras of $B(H)$. Using this
representation, we give a new proof of Wittstock's theorem. Later, we generalize
the representation to the case that A and B are unital operator subalgebras of
$B(H)$. In §3, we prove that a von Neumann algebra is an injective operator
bimodule over two unital subalgebras if and only if it is a finitely injective
operator bimodule.

Throughout this paper, all subspaces, operator subalgebras, operator sub-
bimodules, etc., are closed. We use the term homomorphism for a bimodule

Received by the editors April 12, 1993 and, in revised form, July 6, 1993.
1991 Mathematics Subject Classification. Primary 47A20; Secondary 46L05.
Key words and phrases. Operator bimodules, representation, dilation, injectivity, finite injectiv-
ity, finitely generated operator bimodule.
map when no confusion may result. An embedding is an injective homomorphism. A homeomorphism is a surjective embedding. We do not distinguish between Y an operator subbimodule of X and a completely isometrical embedded copy of Y in X. Every vector space is over the complex numbers, and every map is linear.

Suppose X and Y are $A - B$ operator bimodules over unital operator algebras A and B. We denote by $\text{Hom}(X, Y)$ the space of all completely bounded homomorphisms from X into Y. If X is a subset of a unital C^*-algebra, we denote by $C^*(X)$ the unital C^*-algebra generated by X.

2. Representation of a completely bounded bimodule map

We begin this section with a simple lemma (see [6]).

Lemma 2.1. Suppose that A and B are operator algebras with 1_A and 1_B, respectively. Then an operator space X is an $A - B$ operator bimodule if and only if there exists a completely contractive trilinear map $\Phi: A \times X \times B \to X$ that satisfies

$$\Phi(a_1a_2, x, b_1b_2) = \Phi(a_1, \Phi(a_2, x, b_1), b_2)$$

and

$$\Phi(1_A, x, 1_B) = x$$

for all $a_1, a_2 \in A$, $b_1, b_2 \in B$, and $x \in X$. Moreover, the multiplication is determined by Φ via the equation $\Phi(a, x, b) = axb$ for all $a \in A$, $b \in B$, and $x \in X$.

The following theorem gives us the representations of completely bounded C^*-bimodule maps.

Theorem 2.2. Suppose that A and B are unital C^*-subalgebras of $B(H)$, where H is a Hilbert space. Suppose that X is an $A - B$ operator bimodule. Then every completely bounded $A - B$ bimodule map ϕ from X into $B(H)$ has a representation $(V_1, \pi_1, \theta, \pi_2, V_2, K)$, where π_1 and π_2 are $*$-representations of A and B on a Hilbert space K, θ is a complete contraction from X into $B(K)$, and $H \overset{V_1}{\to} K \overset{V_2}{\to} H$ are bridging maps such that

$$\phi(x) = V_1\theta(x)V_2;$$

$$\theta(axb) = \pi_1(a)\theta(x)\pi_2(b);$$

$$aV_1 = V_1\pi_1(a), \quad V_2b = \pi_2(b)V_2;$$

$$\|\phi\|_{cb} = \|V_1\|\|V_2\|$$

for all $a \in A$, $x \in X$, and $b \in B$.

Proof. Suppose that $(\tilde{\pi}_1, \tilde{\theta}, \tilde{\pi}_2, \tilde{K})$ is a representation of X in Corollary 3.3 of [3], i.e., $\tilde{\pi}_1$ and $\tilde{\pi}_2$ are $*$-representations of A and B on a Hilbert space \tilde{K} and $\tilde{\theta}: X \to B(\tilde{K})$ is a complete isometry such that

$$\tilde{\theta}(axb) = \tilde{\pi}_1(a)\tilde{\theta}(x)\tilde{\pi}_2(b)$$

for all $a \in A$, $x \in X$, and $b \in B$. Applying Lemma 2.1 above, we see that $\tilde{\theta}(X)$ is an $A - B$ operator bimodule with the bimodule multiplication given by $ayb = \tilde{\pi}_1(a)y\tilde{\pi}_2(b)$ for all $a \in A$, $y \in \tilde{\theta}(X)$, and $b \in B$. Moreover, $\tilde{\phi} = \phi \circ \tilde{\theta}^{-1}$ is a completely bounded $A - B$ bimodule map from $\tilde{\theta}(X)$ into
Therefore, there exists a $*$-representation π of $B(\tilde{K})$ on some Hilbert space K and bridging maps $H \xrightarrow{\tilde{V}_1} K \xrightarrow{\tilde{V}_2} H$ such that

$$\tilde{\phi}(y) = \tilde{V}_1 \pi(y) \tilde{V}_2$$

for all $y \in \tilde{\theta}(X)$ and $\|\phi\|_{cb} = \|\tilde{V}_1\| \|\tilde{V}_2\|$ (see [7]). Since for each $x \in X$,

$$\phi(x) = \tilde{\phi}(\theta(x)) = \tilde{V}_1 \pi(\tilde{\pi}_1(1)) \pi(\tilde{\theta}(x)) \pi(\tilde{\pi}_2(1)) \tilde{V}_2,$$

we may assume that $\tilde{V}_1 = \tilde{V}_1 \pi(\tilde{\pi}_1(1))$, $\tilde{V}_2 = \pi(\tilde{\pi}_2(1)) \tilde{V}_2$, where 1 is the unit of $B(H)$.

Let $P: K \to [\pi(\tilde{\theta}(X)) \tilde{V}_2 H]$ be the orthogonal projection onto $[\pi(\tilde{\theta}(X)) \tilde{V}_2 H]$. Then

$$\tilde{\phi} = \tilde{V}_1 \pi \tilde{V}_2 = \tilde{V}_1 P \pi \tilde{V}_2.$$

Since $\pi(\tilde{\pi}_1(a)) \pi(\tilde{\theta}(x)) = \pi(\tilde{\theta}(ax))$ for all $a \in A$ and $x \in X$, we have $P \in \pi(\tilde{\pi}_1(A))'$, the commutant of $\pi(\tilde{\pi}_1(A))$. Moreover, since for each $a \in A$ and $x \in X$,

$$\tilde{V}_1 \pi(\tilde{\pi}_1(a)) \pi(\tilde{\theta}(x)) \tilde{V}_2 = \pi \tilde{V}_1 \pi(\tilde{\theta}(x)) \tilde{V}_2,$$

we have

$$\tilde{V}_1 \pi(\tilde{\pi}_1(a)) P = a \tilde{V}_1 P$$

for all $a \in A$. Let $Q: K \to [\pi(\tilde{\theta}(X))^* P \tilde{V}_1^* H]$ be the orthogonal projection onto $[\pi(\tilde{\theta}(X))^* P \tilde{V}_1^* H]$. Since $P \in \pi(\tilde{\pi}_1(A))'$ and

$$\tilde{V}_1 P \pi(\tilde{\theta}(x)) \tilde{V}_2 b = \tilde{V}_1 P \pi(\tilde{\theta}(x)) \pi(\tilde{\pi}_2(b)) \tilde{V}_2$$

for all $x \in X$ and $b \in B$, we have

$$b^* \tilde{V}_2^* Q = \tilde{V}_2^* \pi(\tilde{\pi}_2(b))^* Q$$

by taking adjoints. Thus,

$$Q \tilde{V}_2 b = Q \pi(\tilde{\pi}_2(b)) \tilde{V}_2$$

for all $b \in B$. Since

$$\pi(\tilde{\pi}_2(b))^* \pi(\tilde{\theta}(x))^* P \tilde{V}_1^* h = \pi(\tilde{\theta}(xb))^* P \tilde{V}_1^* h$$

for all $b \in B$, $x \in X$, and $h \in H$, we have $Q \in \pi(\tilde{\pi}_2(B))'$. For any $x \in X$, h_1, $h_2 \in H$

$$(\phi(x) h_1, h_2) = (\tilde{V}_1 P \pi(\tilde{\theta}(x)) \tilde{V}_2 h_1, h_2)$$

$$= (\tilde{V}_2 h_1, (\tilde{\theta}(x))^* P \tilde{V}_1^* h_2)$$

$$= (\tilde{V}_2 h_1, Q \pi(\tilde{\theta}(x))^* P \tilde{V}_1^* h_2)$$

$$= (\tilde{V}_1 P \pi(\tilde{\theta}(x)) Q \tilde{V}_2 h_1, h_2).$$

Therefore,

$$\phi(x) = \tilde{\phi}(\theta(x)) = \tilde{V}_1 P \pi(\tilde{\theta}(x)) Q \tilde{V}_2.$$

Now setting $V_1 = \tilde{V}_1 P$, $V_2 = Q \tilde{V}_2$, $\pi_1 = \pi \circ \tilde{\pi}_1$, $\pi_2 = \pi \circ \tilde{\pi}_2$, and $\theta = P(\pi \circ \tilde{\theta}) Q$, we obtain the representation $(V_1, \pi_1, \theta, \pi_2, V_2, K)$ with the properties claimed in the theorem. \qed
Remark 2.1. The representation in Theorem 2.2 depends on the representation of the \(A-B\) operator bimodule \(X\). We will use this to give a new and totally different approach to the proof of Wittstock's theorem (cf. [15, 5]).

Suppose that \(A\) and \(B\) are unital operator algebras, and suppose that \(X\) is an \(A-B\) operator bimodule. Recall that \(X\) is an injective \(A-B\) operator bimodule if for each \(A-B\) operator subbimodule \(Y_1\) of an \(A-B\) operator bimodule \(Y\) and each completely bounded homomorphism \(\phi: Y_1 \to X\) there exists a completely bounded homomorphism \(\tilde{\phi}: Y \to X\) which extends \(\phi\) and has the same cb-norm. In other words, \(X\) is an injective object in the category of \(A-B\) operator bimodules and completely bounded homomorphisms (see [5]).

Theorem 2.3. Suppose that \(A\) and \(B\) are unital \(C^*\)-subalgebras of \(B(H)\), where \(H\) is a Hilbert space. Then \(B(H)\) is an injective \(A-B\) operator bimodule.

Proof. Suppose that \(X\) is an \(A-B\) operator subbimodule of an \(A-B\) operator bimodule \(Y\). Suppose \(\phi \in \text{Hom}(X, B(H))\). Suppose that \((\tilde{\pi}_1, \tilde{\theta}, \tilde{\pi}_2, K)\) is a representation of \(Y\). Then \((\tilde{\pi}_1, \tilde{\theta}|_X, \tilde{\pi}_2, K)\) is a representation of \(X\). By using the notation in the proof of Theorem 2.2, \(\phi\) has a representation \((V_1, \pi_1, \theta, \pi_2, V_2, K)\) with the properties described there, where \(\hat{\theta} = P(\pi \circ \tilde{\theta}|_X)Q\). Now if we replace \(\hat{\theta}\) by \(\theta = P(\pi \circ \theta)Q\), then it is easy to see that \((V_1, \pi_1, \theta|_X, \pi_2, V_2, K)\) is a representation of \(\phi\) with the properties claimed in Theorem 2.2. Moreover,

\[
\theta(ab) = P\pi(\tilde{\pi}_1(a))\pi(\tilde{\theta}(b))Q = \pi_1(a)\theta(b)\pi_2(b)
\]

for all \(a \in A\), \(x \in X\), and \(b \in B\). Let \(\tilde{\phi}: Y \to B(H)\) be given by the representation \((V_1, \pi_1, \theta, \pi_2, V_2, K)\); i.e., let \(\tilde{\phi} = V_1\theta V_2\). Then \(\tilde{\phi} \in \text{Hom}(Y, B(H))\), extends \(\phi\), and has the same cb-norm \(\|\phi\|_{\text{cb}}\). □

When \(A\) and \(B\) are unital operator algebras, we still have the same form representation for a completely bounded \(A-B\) bimodule map as we do in the case \(A-B\) are unital \(C^*\)-algebras. However, the representation tells less information than it does in the latter case.

Corollary 2.4. Suppose that \(A\) and \(B\) are unital operator algebras of \(B(H)\), where \(H\) is Hilbert space. Suppose that \(X\) is an \(A-B\) operator bimodule. Then every completely bounded \(A-B\) bimodule map \(\phi\) from \(X\) into \(B(H)\) has representation \((V_1, \pi_1, \theta, \pi_2, V_2, K)\), where \(\pi_1\) and \(\pi_2\) are \(*\)-representation of \(C^*(A)\) and \(C^*(B)\) on a Hilbert space \(K\), \(\theta\) is a complete contraction from \(X\) into \(B(K)\), and \(H \xrightarrow{V_1} K \xrightarrow{V_2} H\) are bridging maps such that

\[
\phi(x) = V_1\theta(x)V_2; \\
\theta(ab) = \pi_1(a)\theta(x)\pi_2(b); \\
aV_1 = V_1\pi_1(a), \quad V_2b = \pi_2(b)V_2; \\
\|\phi\|_{\text{cb}} = \|V_1\|\|V_2\|
\]

for all \(a \in A\), \(x \in X\), and \(b \in B\).

Proof. By a theorem in [6], there exists a completely bounded \(C^*(A) - C^*(B)\) bimodule map \(\tilde{\phi}: \tilde{X} \to B(H)\) such that \(\phi = \tilde{\phi} \circ \alpha\) and \(\|\phi\|_{\text{cb}} = \|\tilde{\phi}\|_{\text{cb}}\), where \(\tilde{X}\)
is a dilation of X which is a $C^*(A) - C^*(B)$ operator bimodule and $\alpha: X \to \tilde{X}$ is a complete contractive $A - B$ bimodule map. Applying Theorem 2.2 to $\tilde{\phi}$ and then restricting to X, we get the representation for ϕ. □

Remark 2.2. It is easy to see that the representation in Corollary 2.4 depends on the dilation \tilde{X} of X. We may not use Corollary 2.4 to get an analogous result of Theorem 2.3 when A and B are unital operator algebras. The reason is that when X is an $A - B$ operator sub-bimodule of an $A - B$ operator bimodule Y, the dilation \tilde{X} is not necessarily a $C^*(A) - C^*(B)$ operator subbimodule of the dilation \tilde{Y}. In fact, M_6 is not an $A - B$ operator bimodule for some unital operator subalgebras A and B of M_6 (see [14]). The following section will give a sufficient and necessary condition for $B(H)$ to be an injective $A - B$ operator bimodule for unital operator subalgebras A and B of $B(H)$.

3. Injectivity of Operator Bimodules

We say that an $A - B$ operator bimodule is finitely generated if there exists a finite subset F of X such that $X = \sum_{i \in F} A F B$. The concept defined in the following definition seems to be a weaker notion than injectivity.

Definition 3.1. An $A-B$ operator bimodule X is called a finitely injective $A-B$ operator bimodule if for any two finitely generated $A-B$ operator bimodules X_1 and X_2 where X_1 is an $A-B$ operator subbimodule of X_2 and any $\phi \in \text{Hom}(X_1, X)$ there is a $\phi' \in \text{Hom}(X_2, X)$ which extends ϕ and has the same cb-norm. Roughly speaking, X is an injective object in the category of finitely generated $A-B$ operator bimodules and completely bounded homomorphism.

The following theorem shows that injectivity and finite injectivity of operator bimodules are the same for von Neumann algebras. It should provide a useful tool to deal with the injectivity question for operator bimodules.

Theorem 3.1. Suppose that \mathcal{D} is a von Neumann algebra. Suppose that A and B are unital operator subalgebras of \mathcal{D}. Then \mathcal{D} is an injective $A-B$ operator bimodule if and only if \mathcal{D} is a finitely injective $A-B$ operator bimodule.

Proof. It is obvious that injectivity implies finite injectivity. Suppose \mathcal{D} is a finitely injective $A-B$ operator bimodule. We prove \mathcal{D} is an injective $A-B$ operator bimodule. Suppose that X_1 is an $A-B$ operator subbimodule of an $A-B$ operator bimodule X_2 and $\phi \in \text{Hom}(X_1, \mathcal{D})$. Without loss of generality, we may assume that $\|\phi\|_{cb} = 1$. We claim that for each $x_0 \in X_2 \setminus X_1$ there is a $\phi_{x_0} \in \text{Hom}([AX_1B], \mathcal{D})$ which extends ϕ with the same cb-norm.

In fact, we may assume that $\|x_0\| = 1$. Let \mathcal{F} be the family of finite subset of X_1. Then \mathcal{F} is a partially ordered set with the usual set-theoretic inclusion partial order. For each $F \in \mathcal{F}$, $\phi_{[A XB]} \in \text{Hom}([AXB], \mathcal{D})$. By the finite injectivity of \mathcal{D}, there is an extension $\phi_{x_0,F} \in \text{Hom}([A(F \cup \{x_0\})B], \mathcal{D})$ of $\phi_{[AXB]} \in \text{Hom}([AXB], \mathcal{D})$ such that $\|\phi_{x_0,F} \|_{cb} = \|\phi_{[AXB]}\|_{cb}$. For each $F \in \mathcal{F}$, there is a subset F_{x_0} of \mathcal{D} consisting of all $y \in \mathcal{D}$ such that there is a $\psi \in \text{Hom}([A(F \cup \{x_0\})], \mathcal{D})$ which extends $\phi_{[AXB]}$ with the cb-norm less than or equal to 1 and such that $\psi(x_0) = y$. Then F_{x_0} is a nonempty closed subset of the closed unit ball, $\text{ball}(<\mathcal{D}>)$, of \mathcal{D} which is compact in the weak operator topology. In fact, by the above argument, $F_{x_0} \not= \emptyset$ and $F_{x_0} \subseteq \text{ball}(<\mathcal{D}>)$ because $\|\psi\|_{cb} \leq 1$ and $\|x_0\| = 1$. Suppose that (y_λ) is a net in F_{x_0} the converges to
some y in the weak operator topology. Since the ball(\mathcal{D}) is compact in the weak operator topology, $y \in \text{ball}(\mathcal{D})$. Let $\phi_0 \in \text{Hom}(A(F \cup \{x_0\}B), \mathcal{D})$ be the extension of $\phi|_{AFB}$ such that $\phi_0(x_0) = y$ and $\|\phi_0\| \leq 1$. Since $\phi_0|_{AFB} + Ax_0B$ is totally determined by y, the limit $\psi = W\text{-}\lim \phi_0|_{AFB} + Ax_0B$ exists. Since the cb-norm is lower semicontinuous in the weak operator topology, we have $\psi \in \text{Hom}([AFB] + Ax_0B, \mathcal{D})$ and $\|\psi\|_{cb} \leq 1$. Since $[AFB] + Ax_0B$ is norm dense in $[A(F \cup \{x_0\})B]$, ψ may be uniquely continuously extended to $[A(F \cup \{x_0\})B]$. Denoting the extension by ψ also, we have $\psi \in \text{Hom}((A(F \cup \{x_0\})B), \mathcal{D})$, $\|\psi\|_{cb} \leq 1$, and $\psi(x_0) = y$. Therefore, $y \in F_{x_0}$ and F_{x_0} is closed in weak operator topology.

If $\{F_i, x_0, F_i \in \mathcal{F}, 1 \leq i \leq n\}$, $n \in \mathbb{N}$, is a finite subcollection of $\{F_{x_0}, F \in \mathcal{F}\}$, then $\bigcup F_i \in \mathcal{F}$ and $\bigcup F_i \subseteq F_i, x_0$ for all $1 \leq i \leq n$. Therefore, $\{F_{x_0}, F \in \mathcal{F}\}$ has finite intersection property. Since ball(\mathcal{D}) is compact in the weak operator topology, there is a $y_0 \in \bigcap\{F_{x_0}, F \in \mathcal{F}\}$. Define $\phi_{x_0}: X_1 + Ax_0B \to \mathcal{D}$ in the following way: for each $x \in X_1 + Ax_0B$, there is a $F \in \mathcal{F}$ such that $x \in [A(F \cup \{x_0\})B]$; let $\phi_{F, x_0} \in \text{Hom}([A(F \cup \{x_0\})B], \mathcal{D})$ be such that $\phi_{F, x_0}(x_0) = y_0$ and $\|\phi_{F, x_0}\| \leq 1$; and set $\phi_{x_0}(x) = \phi_{F, x_0}(x)$. That ϕ_{x_0} is a well-defined homomorphism that follows from the definition of y_0. Moreover, $\|\phi_{x_0}\|_{cb} = \|\phi\|_{cb}$ because $1 = \|\phi\|_{cb} = \sup \|\phi|_{AFB}\|_{cb}$. Since $X_1 + Ax_0B$ is dense in $[X_1 + [Ax_0B]]$, we may continuously extend ϕ_{x_0} to $[X_1 + [Ax_0B]]$, obtaining $\tilde{\phi}_{x_0} \in \text{Hom}([X_1 + [Ax_0B]], \mathcal{D})$ which extends ϕ with the same cb-norm.

Let \mathcal{G} be the family of pairs (ϕ_Y, Y), where Y is an $A - B$ operator sub-bimodule of X_2 containing X_1 and $\phi_Y \in \text{Hom}(Y, \mathcal{D})$ which extends ϕ with the same cb-norm. By the argument just given, \mathcal{G} is a nontrivial family. We give \mathcal{G} the partial order defined by $(\phi_{Y_1}, Y_1) \preceq (\phi_{Y_2}, Y_2)$ if Y_1 is an $A - B$ operator sub-bimodule of Y_2 and $\phi_{Y_2}|_{Y_1} = \phi_{Y_1}$. By Zorn's lemma, there is a maximal element (ϕ_{Y_0}, Y_0). From the initial step, we see that $Y_0 = X_2$. Letting $\tilde{\phi} = \phi_{Y_0}$ yields the desired extension. \hfill \Box

References

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
E-mail address: na@oak.math.uiowa.edu