A unitary as a product of symmetries
HTML articles powered by AMS MathViewer
- by N. K. Thakare and A. R. Baliga
- Proc. Amer. Math. Soc. 123 (1995), 1005-1008
- DOI: https://doi.org/10.1090/S0002-9939-1995-1224621-X
- PDF | Request permission
Abstract:
It was proved by Fillmore that a unitary of a properly infinite von Neumann algebra A can be expressed as a product of at most four symmetries. In this paper we introduce an axiom (ENCP) for Baer $^ \ast$-rings and prove that Fillmoreβs result is true if A is a properly infinite Baer $^ \ast$-ring satisfying (ENCP) and $LP \sim RP$. This also affirmatively answers the open problem on $A{W^ \ast }$-algebras posed by Berberian.References
- Efraim P. Armendariz and S. K. Berberian, Baer rings satisfying $J^2=J$ for all ideals, Comm. Algebra 17 (1989), no.Β 7, 1739β1758. MR 1006523, DOI 10.1080/00927878908823817
- Sterling K. Berberian, Baer *-rings, Die Grundlehren der mathematischen Wissenschaften, Band 195, Springer-Verlag, New York-Berlin, 1972. MR 0429975
- Peter A. Fillmore, On products of symmetries, Canadian J. Math. 18 (1966), 897β900. MR 196509, DOI 10.4153/CJM-1966-090-5
- Paul R. Halmos and Shizuo Kakutani, Products of symmetries, Bull. Amer. Math. Soc. 64 (1958), 77β78. MR 100225, DOI 10.1090/S0002-9904-1958-10156-1
- Irving Kaplansky, Projections in Banach algebras, Ann. of Math. (2) 53 (1951), 235β249. MR 42067, DOI 10.2307/1969540
- Irving Kaplansky, Rings of operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0244778
- Shuichiro Maeda and Samuel S. Holland Jr., Equivalence of projections in Baer $^*$-rings, J. Algebra 39 (1976), no.Β 1, 150β159. MR 404319, DOI 10.1016/0021-8693(76)90067-3
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1005-1008
- MSC: Primary 46K05; Secondary 16W10, 46L10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1224621-X
- MathSciNet review: 1224621