Operators with complex Gaussian kernels: boundedness properties
HTML articles powered by AMS MathViewer
- by E. R. Negrín
- Proc. Amer. Math. Soc. 123 (1995), 1185-1190
- DOI: https://doi.org/10.1090/S0002-9939-1995-1227527-5
- PDF | Request permission
Abstract:
Boundedness properties are stated for some operators from ${L^p}(\mathbb {R})$ into ${L^q}(\mathbb {R}),1 \leq p,q \leq \infty$, with complex Gaussian kernels. Their contraction properties are also analysed.References
- John C. Baez, Irving E. Segal, and Zheng-Fang Zhou, Introduction to algebraic and constructive quantum field theory, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1992. MR 1178936, DOI 10.1515/9781400862504
- Jay B. Epperson, The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel, J. Funct. Anal. 87 (1989), no. 1, 1–30. MR 1025881, DOI 10.1016/0022-1236(89)90002-5
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- Roger Howe, The oscillator semigroup, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 61–132. MR 974332, DOI 10.1090/pspum/048/974332
- Elliott H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), no. 1, 179–208. MR 1069246, DOI 10.1007/BF01233426
- Fred B. Weissler, Two-point inequalities, the Hermite semigroup, and the Gauss-Weierstrass semigroup, J. Functional Analysis 32 (1979), no. 1, 102–121. MR 533222, DOI 10.1016/0022-1236(79)90080-6
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1185-1190
- MSC: Primary 47G10; Secondary 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1995-1227527-5
- MathSciNet review: 1227527