Cesàro means of Fourier series on rotation groups
HTML articles powered by AMS MathViewer
- by Da Shan Fan
- Proc. Amer. Math. Soc. 123 (1995), 1105-1114
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231295-0
- PDF | Request permission
Abstract:
We study the Cesàro means of Fourier series on rotation groups ${\text {SO}}(3)$ and ${\text {SO}}(4)$. On these two classical groups, we solve an open question recently posted in Harmonic analysis on classical groups [Springer-Verlag, Berlin, and Science Press, Beijing, 1991].References
- B. E. Blank, Nontangential maximal functions over compact Riemannian manifolds, Proc. Amer. Math. Soc. 103 (1988), no. 3, 999–1002. MR 947697, DOI 10.1090/S0002-9939-1988-0947697-X E. Cartan, Sur yes domains bornés homogenes de l’espace de n variables complexes, Hamburg Univ. Math. Sem. Abhand. 11 (1936), 106-162.
- Sheng Gong, Dianxing qun shangde tiaohe fenxi, Chuncui Shuxue yu Yingyong Shuxue Zhuanzhu [Series of Monographs in Pure and Applied Mathematics], vol. 12, Kexue Chubanshe (Science Press), Beijing, 1983 (Chinese). MR 724432
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158 A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, Cambridge, 1968.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1105-1114
- MSC: Primary 43A75
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231295-0
- MathSciNet review: 1231295