Resultants of cyclotomic polynomials
HTML articles powered by AMS MathViewer
- by Charles Ching-an Cheng, James H. McKay and Stuart Sui Sheng Wang
- Proc. Amer. Math. Soc. 123 (1995), 1053-1059
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242077-8
- PDF | Request permission
Abstract:
A formula for $\operatorname {Re} {{\text {s}}_x}({\Phi _a}({x^b}),{\Phi _c}({x^d}))$ is given where ${\Phi _a}(x)$ denotes the ath cyclotomic polynomial. This extends a result of Lehmer, Diederichsen, and Apostol.References
- Tom M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24 (1970), 457–462. MR 251010, DOI 10.1090/S0002-9939-1970-0251010-X —, The resultant of the cyclotomic polynomials ${F_m}(ax)$ and ${F_n}(bx)$, Math. Comp. 29 (1975), 1-6, MR 51 #3047. C. C.-A. Cheng, J. H. McKay, and S. S.-S. Wang, A chain rule for multivariable resultants, Proc. Amer. Math. Soc. (to appear).
- Fritz-Erdmann Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Hansischen Univ. 13 (1940), 357–412 (German). MR 2133
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
- Emma T. Lehmer, A numerical function applied to cyclotomy, Bull. Amer. Math. Soc. 36 (1930), no. 4, 291–298. MR 1561938, DOI 10.1090/S0002-9904-1930-04939-3
- James H. McKay and Stuart Sui Sheng Wang, A chain rule for the resultant of two homogeneous polynomials, Arch. Math. (Basel) 56 (1991), no. 4, 352–361. MR 1094422, DOI 10.1007/BF01198221
- B. L. van der Waerden, Algebra. Vol 1, Frederick Ungar Publishing Co., New York, 1970. Translated by Fred Blum and John R. Schulenberger. MR 0263582
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1053-1059
- MSC: Primary 12E10; Secondary 11R18
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242077-8
- MathSciNet review: 1242077