
proceedings of the
american mathematical society
Volume 123, Number 4, April 1995

ABELIAN SUBGROUPS OF PRO-2 GALOIS GROUPS

IDO EFRAT

(Communicated by Lance W. Small)

Abstract. Let a{K) be the maximal cardinality |/| such that Z'2 is a closed

subgroup of the maximal pro-2 Galois group of a field K . We prove estimates

on a(K) conjectured by Ware.

Let K be a field of characteristic ^ 2, and let K(2) be its maximal pro-
2 Galois extension. Thus, K(2) is obtained from K by repeatedly adjoining
all square roots. Let GK(2) be the Galois group G&l(K(2)IK). In [11] Ware
defines the a-invariant a(K) of K to be the maximal rank (possible oo) of

closed subgroups of Gk(2) which are torsion-free and abelian. Note that by

Pontryagin duality, such subgroups are of the form Z'2 for some index set /.

Another closely related invariant of K is its (absolute) stability index st(AT),
defined as the minimal positive integer m (oo if no such m exists) such that

Im+i(K) = 2Im(K), where I(K) is the fundamental ideal of the Witt ring
W(K) of K. In the present note we prove the following three conjectures
raised in [11]:

Theorem. (I) If K is formally real, then a(K) < rankC7A:(2) - 1.
(II) For every finite extension E/K of fields, a(K) < a(E).
(III) a(K) < s\(K).

(With regard to conjecture (I), the conjecture in [11] is in fact only that
a(K) < rankG/¡:(2) ; this slightly weaker inequality is proved in [11, Corollary

5, p. 992] for nonformally real fields.)
Our proofs are based on valuation-theoretic techniques. For convenience, we

recall the following notions and facts from [2, p. 151]: A valued field (K, v) is

2-henselian if v has a unique extension to K(2). Equivalently, Hensel's lemma

holds for polynomials that split completely in K(2). An arbitrary valued field

(K,v) has an immediate 2-extension (K,v) which is 2-henselian and which

uniquely embeds in every 2-henselian extension (L, u) of (K, v) contained

in K(2). In fact, K is the decomposition field of any extension of v to K(2).

An extension (K, v) as above is called a 2-henselization of (K, v). We denote

q(K) — (Kx : (Kx )2). To avoid notational inconsistency, we do not distinguish

here and in the sequel between different infinite cardinalities.
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Lemma 1. Let (K, v) be a 2-henselian field with value group Y and residue

field K of characteristic ^ 2. Then:

(a) Gk(2) = A x G^(2), where A is a torsion-free abelian group of rank

dimF2 T/2T.

(b) If K contains all roots of unity of 2-power order over its prime field, then

GK(2) = Ax Gj?(2) with A as above.

(c) q(K) = q(K)\Y/2Y\.

Proof, (a) is well known (see, e.g., [4, §§19, 20]). (b) follows from (a) and from

[6, Theorem 2.2(ii)]. For (c), take a subset T of Kx such that v(t), t £ T,

represent the distinct cosets of Y/2Y. By Hensel's lemma, the 1-units of v are
squares. Every element x £ Kx can be written as x — aty2 , where a is a unit

of v , t £ T, and y £ K. This induces abijection KX/(KX)2 3 K*/(K*)2xT,
whence the assertion.   □

Our main tool is the following valuation-theoretic description of the a-

invariant:

Proposition 2. Given afield K with a(K) > 2 there exists a valuation v on K

whose residue field K and value group Y satisfy:

(i) char #^2;
(ii) a(K) = log2 |r/2T| + 1 (in particular, Y¿2Y);

(iii) a(K) = a(K) for any 2-henselization K of K;

(iv) K(2)/K(p) is infinite, where p is the group of all roots of unity of 2-

power order over the prime field of K.

Proof. We first observe that criara ^ 2. For otherwise cd(GK(2)) < 1 [9, II-4,

Proposition 3]. Since cd(Z^) = |/| (use, e.g., [9, 1-32, Proposition 22]), this

implies that a(K) < 1, contrary to the assumption.
Now let L be the fixed field of a torsion-free abelian closed subgroup of

GK(2) of maximal rank. Write GL(2) =HJ2x12 with |/| > 1. By [6, Theorem

2.5] (and its proof), L has a 2-henselian valuation u whose residue field L

satisfies charL ^ 2 and Gj(2) = Z2. By [10, Theorem 3.6], L contains all

roots of unity of 2-power order over its prime field. Hence, so does L. Let v

be the restriction of u to K, and let (K, v) be a 2-henselization of (K, v).

We may take K ç L. Let v(2) be the unique extension of v to K(2), and

let K, K(2) be the residue fields of (K, v) and (K(2), v(2)), respectively.

Since L/K is an algebraic extension, char A" / 2. Therefore, the 2-extension

K(2)/K is separable. Clearly, #(2) is quadratically closed. Thus K(2) = K(2).

Denoting the inertia field of (K(2), v(2))/(K, v) by KT we obtain from [4,

Theorem 19.6] that

Gal(KT/K) Sä Aut(Z(2)/X) = i%(2).

Next let E — L n KT . It is 2-henselian with respect to the unique extension of

v [2, Proposition 1.6] and has value group Y and residue field L. By Lemma

1(b), Ge(2) is a torsion-free abelian pro-2 group of rank log2 |T/2T| + 1. As

KÇKCEÇL and a(K) = a(L), we have

a(K) = a(K) = a(E) = log2 |r/2T| + 1,

proving (ii) and (iii).
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Finally, (iv) follows from the fact that K(p) ç L c K(2), and (¡^(2) s
Z2.   ü

Remarks. (1) Given a field K, with a(Ä') > 2, one in general does not have

a valuation on K with value group T satisfying a(K) = log2 |T/2r|. For

example, let Qab be the maximal pro-abelian extension of Q and let E be any

algebraic extension of Qat, with absolute Galois group Z2 . The field K = E((t))

is henselian with respect to its natural valuation u. By Lemma 1(b), Gk(2) =
Z2 x Z2 , hence a(K) = 2. We show that for every nontrivial valuation v on

K with value group Y, \Y/2Y\ < 2. Indeed, if v and u are independent, then

the (ordinary) henselization of K with respect to u is the algebraic closure K

[5, Corollary 2.4], so Y is in this case divisible. Suppose on the other hand

that v and u are dependent and distinct. Since the value group Z of u has

no nontrivial isolated subgroups, there are no proper nontrivial coarsenings of
u [1, Chapter VI, §4.3, Proposition 4]. Therefore, v is finer then u. Let u°

be the valuation induced by v on the residue field E of u, and let Y0 be its

value group. One has a short exact sequence:

o-To^r^z^o

[1, Chapter VI, §4.3, Remark]. The restriction of v0 to Q is p-adic for some

prime p. Since ifp £ Qab ç E for all n > 1, the group T0 is divisible.
Therefore, Y/2Y 3 Z/2Z, as desired.

(2) For every valuation v on K with value group Y and residue character-

istic ¿ 2, log2 |r/2r| < a(K) [11, Corollary 2(i), p. 990].

Proof of (I). By Kummer theory and [9, 1-38, Corollary],

log2 q(K) = dimF2 Hom(C7A:(2), Z/2Z) = rank (^(2).

We therefore need to show that a(K) < log2 q(K) - 1 for K formally real.

This is trivial when q(K) = oo . Suppose then that q(K) < oo . We prove the

assertion by induction on q(K). The case a(K) = 0 is clear. If a(K) = 1,
then q(K) > 4 by [11, Example (1)], as required. We may therefore assume

that a(K) > 2. Let v , K, and Y be as in Proposition 2, and let (K, v) be

a 2-henselization of (K, v). Then K = KK2 (see, e.g., [3, Lemma 2.4(a)]).

Therefore, the natural homomorphism

A:KX/(KX)2^KX/(KX)2

is surjective, so one of the following holds:

Case (1): A is not infective. Then 2q(K) < q(K). If K is formally real, we

may therefore apply the induction hypothesis to obtain that a(K) < log2 q(K) -

1. If K is not formally real, then we still have a(K) < log2q(K), by [11,

Corollary 5, p. 992]. As a(K) = a(K), we conclude that a(K) < log2(£) <
log2 q(K) - 1, as required.

Case (2): A is an isomorphism. Let M be the maximal ideal of the valuation

ring of v . By Hensel's Lemma, l+M ç K2C\K - K2 . This implies that (K, v)

is 2-henselian [7, Lemma 3.14], i.e.^A: = K. We have q(K) < (Y: 2Y)q(K) =

q(K), by Lemma 1(c). Moreover, K is formally real [7, Lemma 3.15]. From
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the induction hypothesis we therefore get a(K) < log2 q(K) -1. Conclude from

[11, Corollary 1, p. 990] that

a(K) < log2 |r/2T| + a(K) < log2 |T/2T| + log2 q(K) - 1 = log2 q(K) - 1,

completing the induction.   D

Remarks. (1) Ware [11, Remark, p. 992] proves (I) for K (real-)pythagorean

and shows that in general a(K) < 21og2(A") - 2.
(2) The bound a(K) < log2 q(K) - 1 for K formally real is sharp. For

example, a repeated application of Lemma 1(a) shows that K = R((ii)) • • ■ ((tn))

has GK (2) s %l » (Z/2Z), hence a(K) = log2 q(K) -l = n.
(3) If K is not formally real, then in general one cannot improve the bound

a(K) < lo%2q(K) given in [11, Corollary 5, p. 992]. E.g., K = Q((r,)) •• •((*„))
has a(K) = log2 q(K) = n .

(4) Denote the maximal rank of torsion-free abelian closed subgroups of a
pro-2 group G by a(G). The inequality a(G) < rankC?, although valid for

maximal pro-2 Galois groups of fields (by (I) and [11, Corollary 5, p. 992]),
does not hold for arbitrary pro-2 groups. For example, the wreath product

G = Z2 ! (Z/4Z) has rank 2, yet it has l\ as an open subgroup.

For the next proof we need an almost trivial yet important observation:

Lemma 3. Let Y be a subgroup of a finite index of a torsion-free abelian group

A. Then (A: 2A) - (Y: 2Y).

Proof. Since A is torsion-free, A/Y = 2A/2Y naturally. The assertion therefore

follows from the equalities

(A: 2A)(2A: 2Y) = (A: 2Y) = (A: Y)(Y: 2Y).   O

Proof of (II). If a(E) = 0, then [E(2): E] < 2 by [11, Example (1)], whence
[K(2) : K] < oo and we get a(K) = 0. We may therefore assume that a(K) > 2.

Let v , Y, K, and p be as in Proposition 2. Also let u be an extension of v

to E, let E be the residue field of (E, u), and let A be its value group. Fix

a 2-henselization E of (E, u). Since E/K and, hence, E(p)/K(p) are finite

extensions and since E(2)/K(p) is infinite, E(p) / E(2). By [11, Theorem

l(i)], a(E) = log2 |A/2A| + a(E). Since K(2)/K is an infinite extension, so is

E(2)/K, hence so is E(2)/E. In particular, 1 < a(E), by [11, Example (1)),
p. 985] again. From this and from Lemma 3 we deduce:

a(K) = log2 |r/2T| + 1 < log2 |A/2A| + a(Ë) = a(Ê) < a(E).   G

Remark. The inequality (II) holds also when chartf = 2. Indeed, as observed

at the beginning of the proof of Proposition 2, this implies that a(K) < 1.

Moreover, a(E) = 0 if and only if E is quadratically closed. But in this case

we obviously have a(K) = 0 as well.

Proof of (III). If si(K) - 0, then K is quadratically closed and we are done. We

may therefore assume that a(K) > 2. Let v , Y, and K be as in Proposition

2, and choose a subset T of Kx such that the cosets of v(t), t £ T, form a

linear basis of r/2T over F2. Thus, a(K) = log2 |r/2r| + 1 = \T\+l. Since

K is not quadratically closed, there exists a u-unit a in K whose residue ä
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_2
is not in K . For any finite subset T0 of T having m elements, consider the

(m+l)-Pfisterform tpTo = {(a))®Ç$teT((t)). Its similarity class is in Im+l(K).

But all its nonzero residue forms (cf. [8, p. 136]) are {(a)) and, hence, are not

in 2W(K).  It follows that <pTo  <£ 2Im(K), so m < st(K).  Conclude that

a(K) = \T\ + I < st(K).    D
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