Superlacunary cusp forms
HTML articles powered by AMS MathViewer
- by Ken Ono and Sinai Robins
- Proc. Amer. Math. Soc. 123 (1995), 1021-1029
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242101-2
- PDF | Request permission
Abstract:
Many researchers have studied Euler product identities of weight $k = \frac {1}{2}$ and $k = \frac {3}{2}$, often related to the Jacobi Triple Product identity and the Quintuple Product identity. These identities correspond to theta series of weight $k = \frac {1}{2}$ and $k = \frac {3}{2}$, and they exhibit a behavior which is defined as superlacunary. We show there are no eigen-cusp forms of integral weight which are superlacunary. For half-integral weight forms with $k \geq \frac {5}{2}$, we give a mild condition under which there are no superlacunary eigen-cusp forms. These results suggest the nonexistence of similar Euler-Product identities that arise from eigen-cusp forms with weight $k \ne \frac {1}{2}$ or $\frac {3}{2}$.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- Barry A. Cipra, On the Shimura lift, après Selberg, J. Number Theory 32 (1989), no. 1, 58–64. MR 1002114, DOI 10.1016/0022-314X(89)90097-8
- J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308–339. MR 554399, DOI 10.1112/blms/11.3.308 P. Deligne, Formes modulaires el representations l-adiques, Lecture Notes in Math., vol. 179, Springer-Verlag, New York, 1971, pp. 139-172.
- D. Dummit, H. Kisilevsky, and J. McKay, Multiplicative products of $\eta$-functions, Finite groups—coming of age (Montreal, Que., 1982) Contemp. Math., vol. 45, Amer. Math. Soc., Providence, RI, 1985, pp. 89–98. MR 822235, DOI 10.1090/conm/045/822235
- B. Gordon, Some identities in combinatorial analysis, Quart. J. Math. Oxford Ser. (2) 12 (1961), 285–290. MR 136551, DOI 10.1093/qmath/12.1.285
- Basil Gordon and Kim Hughes, Multiplicative properties of $\eta$-products. II, A tribute to Emil Grosswald: number theory and related analysis, Contemp. Math., vol. 143, Amer. Math. Soc., Providence, RI, 1993, pp. 415–430. MR 1210529, DOI 10.1090/conm/143/01008 B. Gordon and S. Robins, Lacunarily of Dedekind $\eta$-products, preprint.
- Basil Gordon and Dale Sinor, Multiplicative properties of $\eta$-products, Number theory, Madras 1987, Lecture Notes in Math., vol. 1395, Springer, Berlin, 1989, pp. 173–200. MR 1019331, DOI 10.1007/BFb0086404
- V. G. Kac, Infinite-dimensional algebras, Dedekind’s $\eta$-function, classical Möbius function and the very strange formula, Adv. in Math. 30 (1978), no. 2, 85–136. MR 513845, DOI 10.1016/0001-8708(78)90033-6
- V. G. Kac and D. H. Peterson, Affine Lie algebras and Hecke modular forms, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 3, 1057–1061. MR 585190, DOI 10.1090/S0273-0979-1980-14854-5
- Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911, DOI 10.1007/978-1-4684-0255-1 E. Landau, Ăśber die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys. (3) 13 (1908), 30-312.
- I. G. Macdonald, Affine root systems and Dedekind’s $\eta$-function, Invent. Math. 15 (1972), 91–143. MR 357528, DOI 10.1007/BF01418931
- Geoffrey Mason, $M_{24}$ and certain automorphic forms, Finite groups—coming of age (Montreal, Que., 1982) Contemp. Math., vol. 45, Amer. Math. Soc., Providence, RI, 1985, pp. 223–244. MR 822240, DOI 10.1090/conm/045/822240
- Morris Newman, Construction and application of a class of modular functions. II, Proc. London Math. Soc. (3) 9 (1959), 373–387. MR 107629, DOI 10.1112/plms/s3-9.3.373 K. Ono, On dihedral representations of modular forms with complex multiplication, preprint.
- Kenneth A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 601, Springer, Berlin, 1977, pp. 17–51. MR 0453647
- Kenneth A. Ribet, On $l$-adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985), 185–194. MR 819838, DOI 10.1017/S0017089500006170
- Kenneth H. Rosen, Elementary number theory and its applications, 4th ed., Addison-Wesley, Reading, MA, 2000. MR 1739433
- Jean-Pierre Serre, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. (2) 22 (1976), no. 3-4, 227–260. MR 434996 —, Modular forms of weight 1 and Galois representations, Algebraic Number Fields (A. Frolich, ed.), Academic Press, New York, 1977, pp. 193-268. —, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 123-201.
- Jean-Pierre Serre, Sur la lacunarité des puissances de $\eta$, Glasgow Math. J. 27 (1985), 203–221 (French). MR 819840, DOI 10.1017/S0017089500006194
- J.-P. Serre and H. M. Stark, Modular forms of weight $1/2$, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 627, Springer, Berlin, 1977, pp. 27–67. MR 0472707
- Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481. MR 332663, DOI 10.2307/1970831
- Jacob Sturm, Theta series of weight $3/2$, J. Number Theory 14 (1982), no. 3, 353–361. MR 660380, DOI 10.1016/0022-314X(82)90070-1
- M. V. Subbarao and M. Vidyasagar, On Watson’s quintuple product identity, Proc. Amer. Math. Soc. 26 (1970), 23–27. MR 263770, DOI 10.1090/S0002-9939-1970-0263770-2
- H. P. F. Swinnerton-Dyer, On $l$-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 1–55. MR 0406931
- J. B. Tunnell, A classical Diophantine problem and modular forms of weight $3/2$, Invent. Math. 72 (1983), no. 2, 323–334. MR 700775, DOI 10.1007/BF01389327
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1021-1029
- MSC: Primary 11F37; Secondary 11F11, 11F32
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242101-2
- MathSciNet review: 1242101