Two results on the $2$-local $EHP$ spectral sequence
HTML articles powered by AMS MathViewer
- by M. G. Barratt, F. Cohen, B. Gray, M. Mahowald and W. Richter
- Proc. Amer. Math. Soc. 123 (1995), 1257-1261
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246514-4
- PDF | Request permission
Abstract:
The ${E_2}$-term of the 2-local EHP spectral sequence is shown to be a $\mathbb {Z}/2$ module. 4 is the order of the identity map on the double loop space of the fiber $W(n)$ of the double suspension ${E^2}:{S^{2n - 1}} \to {\Omega ^2}{S^{2n + 1}}$.References
- F. R. Cohen, A course in some aspects of classical homotopy theory, Algebraic topology (Seattle, Wash., 1985) Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp.Β 1β92. MR 922923, DOI 10.1007/BFb0078738
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no.Β 3, 549β565. MR 554384, DOI 10.2307/1971238
- Brayton Gray, Unstable families related to the image of $J$, Math. Proc. Cambridge Philos. Soc. 96 (1984), no.Β 1, 95β113. MR 743705, DOI 10.1017/S0305004100061971
- Brayton Gray, On the iterated suspension, Topology 27 (1988), no.Β 3, 301β310. MR 963632, DOI 10.1016/0040-9383(88)90011-0
- John R. Harper, A proof of Grayβs conjecture, Algebraic topology (Evanston, IL, 1988) Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp.Β 189β195. MR 1022681, DOI 10.1090/conm/096/1022681
- I. M. James, On the suspension sequence, Ann. of Math. (2) 65 (1957), 74β107. MR 83124, DOI 10.2307/1969666
- Mark Mahowald, The image of $J$ in the $EHP$ sequence, Ann. of Math. (2) 116 (1982), no.Β 1, 65β112. MR 662118, DOI 10.2307/2007048
- Mark E. Mahowald and Douglas C. Ravenel, The root invariant in homotopy theory, Topology 32 (1993), no.Β 4, 865β898. MR 1241877, DOI 10.1016/0040-9383(93)90055-Z
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042 W. Richter, The H-space squaring map on ${\Omega ^3}{S^{4n + 1}}$ factors through the double suspension, Proc. Amer. Math. Soc. (submitted).
- Paul Selick, $2$-primary exponents for the homotopy groups of spheres, Topology 23 (1984), no.Β 1, 97β99. MR 721456, DOI 10.1016/0040-9383(84)90029-6
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1257-1261
- MSC: Primary 55Q40; Secondary 55Q15, 55Q25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246514-4
- MathSciNet review: 1246514