TWO RESULTS ON THE 2-LOCAL EHP SPECTRAL SEQUENCE

M. G. BARRATT, F. COHEN, B. GRAY, M. MAHOWALD, AND W. RICHTER

(Communicated by Thomas Goodwillie)

ABSTRACT. The E_2 -term of the 2-local *EHP* spectral sequence is shown to be a $\mathbb{Z}/2$ module. 4 is the order of the identity map on the double loop space of the fiber W(n) of the double suspension $E^2: S^{2n-1} \to \Omega^2 S^{2n+1}$.

1. INTRODUCTION

Restrict attention to the category of 2-local spaces. The EHP fibrations [6, 1]

$$\Omega^2 S^{2q+1} \xrightarrow{P} S^q \xrightarrow{E} \Omega S^{q+1} \xrightarrow{H} \Omega S^{2q+1}$$

give a tower of fibrations converging to $Q(S^0)$, whose homotopy spectral sequence is the *EHP* spectral sequence [9] $E_1^{p,q} = \pi_{p+q}(S^{2q-1}) \Rightarrow \pi_p^s$, with differentials $d_r: E_r^{p,q} \to E_r^{p-r,q-1}$. James [6] proved that $2^{2n}\pi_*(S^{2n+1}) = 0$, by showing that $2\pi_*(S^{2n+1}) \subset \text{Im}(E)$ and $E(2\pi_*(S^{2n})) \subset \text{Im}(E^2)$. Thus the E_{∞} -term of the *EHP* spectral sequence is a $\mathbb{Z}/2$ module. James's work was translated to spaces [1, §5]:

Lemma 1.1. (1) $\Omega^2 S^{2n+1} \xrightarrow{\Omega H} \Omega^2 S^{4n+1} \xrightarrow{2} \Omega^2 S^{4n+1}$ is nullhomotopic.

(2) There exists a map ϕ making the following diagram homotopy commutative.

Mahowald [8] made the following conjecture, which will follow from Lemma 1.1 and an extensive amount of diagram chasing.

Received by the editors June 8, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 55Q40, 55Q15, 55Q25.

Key words and phrases. Exponents, EHP fibrations and spectral sequence, W(n), coliftings. Research supported by the NSF.

Theorem 1.2. The E_2 -term of the EHP spectral sequence is a $\mathbb{Z}/2$ module. The 4^{th} power map of $\Omega^2 W(n)$ is nullhomotopic, and $\pi_*(W(n))$ has exponent 4.

Let $d_1^+: \Omega^3 S^{4n+1} \xrightarrow{\Omega P} \Omega S^{2n} \xrightarrow{H} \Omega S^{4n-1}$ and $d_1^-: \Omega^3 S^{4n+3} \xrightarrow{\Omega P} \Omega S^{2n+1} \xrightarrow{H} \Omega S^{4n+1}$ denote the composites which realize the first *EHP* differential. Selick [11] improved the James exponent to $2^{2n-[n/2]}$. Cohen [1, §6] reformulated this as a compression of the *H*-space squaring map on $\Omega^4 S^{4n+1}$ through $\Omega^2 S^{4n-1}$. Theorem 1.2 is implied by the following compression result, which extends their work.

Theorem 1.3. There exist maps $\mathscr{F}^+: \Omega^2 S^{4n-1} \to \Omega^4 S^{4n+1}$ and $\mathscr{F}^-: \Omega^2 S^{4n-3} \to \Omega^2 W(n)$ making the following diagrams homotopy commutative.

2. Proofs

For any space X, we will denote by $2: \Omega X \to \Omega X$ the H-space squaring map. We will often use the following fact. For any map $f: \Omega X \to \Omega Y$, the composites $\Omega^2 X \xrightarrow{\Omega f} \Omega^2 Y \xrightarrow{2} \Omega^2 Y$ and $\Omega^2 X \xrightarrow{2} \Omega^2 X \xrightarrow{\Omega f} \Omega^2 Y$ are homotopic. We will use the following result about *coliftings*, which we state without proof.

Lemma 2.1. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration, and let $f: B \longrightarrow X$ be a map such that $f \cdot p: E \longrightarrow X$ is nullhomotopic. Then Ωf factors through ∂ , by a colifting $\mathscr{B}: F \longrightarrow \Omega X$, which makes the following diagram commutes up to homotopy.

Proof of Theorem 1.3. The EHP fibration $\Omega S^{2n} \xrightarrow{\Omega E} \Omega^2 S^{2n+1} \xrightarrow{\Omega H} \Omega^2 S^{4n+1}$ and Lemmas 1.1(1) and 2.1 give a colifting $\mathscr{B}: \Omega S^{2n} \longrightarrow \Omega^3 S^{4n+1}$ making the diagram

homotopy commutative. But $\mathscr{B} \cdot E : S^{2n-1} \to \Omega^3 S^{4n+1}$ is nullhomotopic. By Lemma 2.1 and the *EHP* fibration $\Omega^2 S^{4n-1} \xrightarrow{P} S^{2n-1} \xrightarrow{E} \Omega S^{2n}$, there exists

a colifting $\mathscr{F}^+: \Omega^2 S^{4n-1} \to \Omega^4 S^{4n+1}$ making the diagram

homotopy commutative. This proves the first part of Theorem 1.3.

By Lemma 1.1(2), the composite $\Omega^2 S^{2n} \xrightarrow{2-\Omega E \cdot \phi} \Omega^2 S^{2n} \xrightarrow{\Omega^2 E} \Omega^3 S^{2n+1}$ is nullhomotopic. Hence there exists a map $\psi \colon \Omega^2 S^{2n} \to \Omega^4 S^{4n+1}$ making the diagram

commute up to homotopy, since (cf. [1, Proof of Lemma 4.1]) ΩH is linear. We have an induced map of fibers $\beta: \Omega S^{2n-1} \to \Omega W(n)$, obtained by pulling back the outer trapezoid to the left, making the following diagram homotopy commutative.

But $\beta \cdot E \colon S^{2n-2} \longrightarrow \Omega W(n)$ is nullhomotopic. The *EHP* fibration $\Omega^2 S^{4n-3} \xrightarrow{P} S^{2n-2} \xrightarrow{E} \Omega S^{2n-1}$ and Lemma 2.1 then yield the colifting \mathscr{F}^- : $\Omega^2 S^{4n-3} \longrightarrow \Omega^2 W(n)$ making the following diagram homotopy commutative.

Proof of Theorem 1.2. By Theorem 1.3, $\operatorname{Ker}(d_1^+)_* \subset \pi_*(S^{4n+1})$ is a $\mathbb{Z}/2$ module. Thus each $E_2^{*,2n+1}$ is a $\mathbb{Z}/2$ module. By Theorem 1.3, any cycle $\alpha \in \operatorname{Ker}(d_1^-)_* \subset \pi_*(S^{4n-1})$ satisfies $2\alpha \in \operatorname{Im}(d_1^+)_*$. Hence each $E_2^{*,2n}$ is a $\mathbb{Z}/2$ module.

We have the fibration sequence $\Omega^2 S^{4n-1} \xrightarrow{\partial} W(n) \xrightarrow{j} \Omega^3 S^{4n+1} \xrightarrow{d_1^+} \Omega S^{4n-1}$. By Theorem 1.3, the composite $\Omega W(n) \xrightarrow{\Omega j} \Omega^4 S^{4n+1} \xrightarrow{2} \Omega^4 S^{4n+1}$ is nullhomotopic. As indicated by the following homotopy commutative diagram, there exists a lifting $f: \Omega W(n) \rightarrow \Omega^3 S^{4n-1}$ of the H space squaring map of $\Omega W(n)$ through $\Omega \partial$.

We have the following homotopy commutative diagrams.

By looping the above parallelogram and applying Lemma 1.1(1), we see that the composite $\Omega^2 W(n) \xrightarrow{\Omega f} \Omega^4 S^{4n-1} \xrightarrow{\Omega d_1^-} \Omega^2 S^{4n-3}$ is nullhomotopic. The composite $\Omega^2 W(n) \xrightarrow{\Omega f} \Omega^4 S^{4n-1} \xrightarrow{2} \Omega^4 S^{4n-1} \xrightarrow{\Omega^2 \partial} \Omega^2 W(n)$ is nullhomotopic, by Theorem 1.3. Hence 4: $\Omega^2 W(n) \to \Omega^2 W(n)$, the 4th power map, is nullhomotopic. \Box

3. Remarks

James [6] also showed that 2E(x) = 0 for all $x \in \text{Ker}(E^2) \subset \pi_*(S^q)$. When q = 2n - 1, this gives evidence for Theorem 1.2, as it is implied by $4\pi_*(W(n)) = 0$. We used the case q = 2n of James's result in an earlier version of our paper.

Richter [10] strengthened Theorem 1.3, showing that $2 \simeq -\Omega E^2 \cdot d_1^+$ on $\Omega^3 S^{4n+1}$ and $2 - \Omega^3(2i) \simeq -\Omega E^2 \cdot d_1^-$ on $\Omega^3 S^{4n-1}$, solving a conjecture of Gray [3] and Mahowald, which Harper [5] proved at odd primes. At an odd prime p, Cohen, Moore, and Neisendorfer [2] showed that the p^{th} power map on $\Omega W(n)$ is nullhomotopic. Gray [4] showed that W(n) deloops, essentially by delooping the map d_1^+ . It was already known that $\pi_*(W(2))$ had exponent 4, by Cohen's [1, Theorem 19.1] splitting $\Omega^2 S^5\{2\} \simeq W(2) \times \Omega^2 S^3\langle3\rangle$.

Mahowald [8] further conjectured that $(d_1^-)_* = 0: \pi_{*+2}(S^{4n-1}) \longrightarrow \pi_*(S^{4n-3})$. Note that James shows that $\operatorname{Ker}(E) \subset \pi_*(S^{2n+1})$ is a $\mathbb{Z}/4$ module.

The conjecture implies that Ker(E) is a $\mathbb{Z}/2$ module. By [10], the conjecture also implies

Conjecture C2. For any element $\alpha \in \pi_*(S^{4n-1})$, $(2\iota) \cdot \alpha = 2\alpha \in \pi_*(S^{4n-1})$.

One might wonder whether $2 \simeq \Omega^k(2i)$ on $\Omega^k S^{4n-1}$ for some k. Note [1, §§11 and 12] that away from Arf invariant one or Hopf invariant one dimensions, k must be at least 3.

ACKNOWLEDGMENT

Thanks to Paul Burchard for the commutative diagram package, which uses $L^{\mathcal{A}}_{\mathcal{M}}\mathcal{S}$ -TFX fonts.

References

- 1. F. Cohen, A course in some aspects of classical homotopy theory, Algebraic Topology, Proceedings Seattle 1985 (H. Miller and D. Ravenel, eds.), Lecture Notes in Math., vol. 1286, Springer, New York, 1987, pp. 1-92.
- 2. F. Cohen, J. C. Moore, and J. Neisendorfer, *Exponents in homotopy groups*, Ann. of Math. (2) **110** (1979), 549-565.
- 3. B. Gray, Unstable families related to the image of J, Math. Proc. Cambridge Philos. Soc. 96 (1984), 95-113.
- 4. _____, On the iterated suspension, Topology 27 (1988), 301-310.
- 5. J. Harper, A proof of Gray's conjecture, Proc. Internat. Conf. Algebraic Topology (M. Mahowald and S. Priddy, eds.), Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 189–195.
- 6. I. M. James, On the suspension sequence, Ann. of Math. (2) 65 (1957), 74-107.
- 7. M. Mahowald, The image of J in the EHP sequence, Ann. of Math. (2) 116 (1982), 65-112.
- 8. M. Mahowald and D. Ravenel, The root invariant in stable homotopy, Topology 32 (1993), 865-898
- 9. D. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure Appl. Math., vol. 121, Academic Press, Boston, MA, 1986.
- 10. W. Richter, The H-space squaring map on $\Omega^3 S^{4n+1}$ factors through the double suspension, Proc. Amer. Math. Soc. (submitted).
- 11. P. Selick, 2-primary exponents for the homotopy groups of spheres, Topology 23 (1984), 97-99.

(M. G. Bartatt, M. Mahowald, and W. Richter) DEPARTMENT OF MATHEMATICS, NORTHWEST-ERN UNIVERSITY, EVANSTON, ILLINOIS 60208-2730

Current address, W. Richter: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

E-mail address, M. Mahowald: mark@math.nwu.edu

E-mail address, W. Richter: richter@math.purdue.edu

(F. Cohen) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NEW YORK 14627-0001

(B. Gray) Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680-4348

E-mail address: brayton@math.nwu.edu