
proceedings of the
american mathematical society
Volume 123, Number 4, April 1995

TWO RESULTS ON THE 2-LOCAL EHP SPECTRAL SEQUENCE
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(Communicated by Thomas Goodwillie)

Abstract. The E2-term of the 2-local EHP spectral sequence is shown to

be a Z/2 module. 4 is the order of the identity map on the double loop space

of the fiber W(n) of the double suspension E2: S2"'1 —» fi252"+1 .

1. Introduction

Restrict attention to the category of 2-local spaces.  The EHP fibrations

[6,1]
iV-^+i _p, s" S fiSi+1 S Çis2*+X

give a tower of fibrations converging to Q(S°), whose homotopy spectral se-

quence is the EHP spectral sequence [9] Ep'9 = np+q(S2q~x) =► np, with

differentials dr: EP'q —> EP~r'q-1. James [6] proved that 22"7tt(pS2"+1) = 0,

by showing that 27t,(52"+1) C lm(E) and E(2n*(S2n)) c lm(E2). Thus the
^oo-term of the EHP spectral sequence is a Z/2 module. James's work was

translated to spaces [1, §5]:

Lemma 1.1. (1)  fi252n+1 -^ fi254n+1 -^ fi254"+1 is nullhomotopic.

(2) There exists a map <f> making the following diagram homotopy commu-
tative.

Çl2S2n   -►   fi2^"   -►   fi3S2"+1

CIE2

fiS2"-1

Mahowald [8] made the following conjecture,  which will follow from

Lemma 1.1 and an extensive amount of diagram chasing.
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Theorem 1.2. The E2-termofthe EHP spectral sequence is a Z/2 module. The

4th power map of Çl2W(n) is nullhomotopic, and n»(W(n)) has exponent 4.

Let d+: fi354"+1 ^ QS2" JL, q^-i and d-. ß354«+3 jv Q52„+i _»

fiS4"+1 denote the composites which realize the first EHP differential. Selick

[11] improved the James exponent to 22"~["l2]. Cohen [1, §6] reformulated this

as a compression of the //-space squaring map on fi454"+1 through fi2^4"-1.
Theorem 1.2 is implied by the following compression result, which extends their

work.

Theorem 1.3. There exist maps 9r+: Çl2SAn~x —> fi454"+1 and 9r~ : Çl2SAn~3

—► Çl2W(n) making the following diagrams homotopy commutative.

fi4S4 n+l
Odt

fi2S4«-l

4n-l

fi4S4"+1

fi45

fi4S4"-

sid:

a2a

Ci2S4"-3

ci2W(n)

2. Proofs

For any space X, we will denote by 2 : ClX —> QX the //-space squaring
map.   We will often use the following fact.   For any map /: fiX —> ClY,

the composites Q2X ■% fi2T -^ fi2T and fi2X -¿+ Q2X -^> fi27 are

homotopic. We will use the following result about coliftings, which we state

without proof.

Lemma 2.1. Let F -U E -^+ B be a fibration, and let f:B —► X be a map
such that f • p: E —+ X is nullhomotopic. Then fi/ factors through d , by a

colifting A8 : F —► Í\X, which makes the following diagram commutes up to

homotopy.
d

ÇIB   -►   F

Clf

QX

Proof of Theorem 1.3. The EHP fibration CIS2" -^ fi252"+1 -^ fi254n+1
and Lemmas 1.1(1) and 2.1 give a colifting 3S: fiS2" —♦ fi354n+1 making the
diagram

SIP
ci3s4n+x -► ns2n

Q.3S4n+x

homotopy commutative. But A% -E: S2n~x —► fi354"+1 is nullhomotopic. By

Lemma 2.1 and the EHP fibration Çl2S4n'x -^ S2""1 •£ fi-S2", there exists
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a colifting y+: fi2.?4"-1 —» fi45'4"+1 making the diagram

SIH
Çl2S2n QASAn-l

Sl&
4e4n+lQAS

homotopy commutative. This proves the first part of Theorem 1.3.

By Lemma 1.1(2), the composite fi252"
2-SlE-<f>

fi2S2" — fi3S2"+1  is

nullhomotopic. Hence there exists a map ip: Çl2S2n —♦ fi454n+1 making the

diagram

2o2n&s
SIH

fi2S4""

fi454"+1
SllP

2o2/t&s
SÏH

2o4n-lÍYS

commute up to homotopy, since (cf. [1, Proof of Lemma 4.1]) fi// is linear.

We have an induced map of fibers ß: fiS2"-1 —► ÇlW(n), obtained by pulling
back the outer trapezoid to the left, making the following diagram homotopy
commutative.

ß354«-i _nr_^ çis2"-x _"*-   Ç?S2n

a3s4n~x SAU çiw(n) -2L

v

Çl4S4n+x

-°*U fi254"-1

I'
sut

fi254""

But   ß • E: S2"'2   —»   QW(n)   is nullhomotopic.     The   EHP   fibration

ß254«-3 _•£, s2"'2 •£ Çis2"-X and Lemma 2.1 then yield the colifting &-\
ÚAS4n~3 —► iï2W(n) making the following diagram homotopy commutative.

fi2S2"-'
SIH

fi2pS4"-

Q0

Q2W(n)

Proof of Theorem 1.2. By Theorem 1.3, Ker(í/+)» c nt(S4n+x) isa Z/2 mod-

ule. Thus each El'2n+X is a Z/2 module. By Theorem 1.3, any cycle a e

Ker(</¡~), C n*(S4n-x) satisfies 2a e lm(dt),. Hence each E*>2n is a Z/2

module.

We have the fibration sequence fi254"-' -^ W(n) -A fi354"+1 ̂ L fiS4"-1.

By Theorem 1.3, the composite ClW(n) -^ fi4S4n+1 -^ fi4S4"+1 is nullho-
motopic. As indicated by the following homotopy commutative diagram, there

exists a lifting f:ÇlW(ri)—> fi354n_1 of the H space squaring map of SlW(n)
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through fiö.

rfs4"-1   -^  aw(n)   -^  fi4S4"+1

/    N>

QW'n)   -^U  çi*sAn+x   -^

We have the following homotopy commutative diagrams.

p
2e4«-las -+ s2n-x

n2s4/1-1

QW(n)

3o4/i-las

aw (n)

W(n)

n.s2"-

4/1-3

By looping the above parallelogram and applying Lemma 1.1(1), we see that

the composite £l2W(n) -9£ as4n~x -^U fi254"-3 is nullhomotopic.   The

composite &W(n) -24 fi4^4"-1 -i fi4^4"-1 — a2W{n) is nullhomotopic,
by Theorem 1.3. Hence 4: fi2If (n) —» fi2H/(«), the 4th power map, is null-
homotopic.   D

3. Remarks

James [6] also showed that 2E(x) = 0 for all x e Ker(E2) c n,(S9).
When q = 2« - 1, this gives evidence for Theorem 1.2, as it is implied by

4n*(W(ri)) = 0. We used the case q = 2n of James's result in an earlier
version of our paper.

Richter [10] strengthened Theorem 1.3, showing that 2 ~ -fi£2 • dx+ on

fi3^4^1 and 2 - fi3(2i) ~ -fi£2 • rff on fi3,?4"-1, solving a conjecture of
Gray [3] and Mahowald, which Harper [5] proved at odd primes. At an odd
prime p, Cohen, Moore, and Neisendorfer [2] showed that the pth power map
on OlV(n) is nullhomotopic. Gray [4] showed that W(ri) deloops, essentially

by delooping the map d\ . It was already known that n*(W(2)) had exponent

4, by Cohen's [1, Theorem 19.1] splitting fi2S5{2} ~ W(2) x fi253(3).
Mahowald [8] further conjectured that (rff)* = 0: 7tt+2(S4n~x) —>

7t,(S4n-3). Note that James shows that Ker(£) c n,(S2n+l) is a Z/4 module.
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The conjecture implies that Ker(-E) is a Z/2 module. By [10], the conjecture

also implies

Conjecture C2. For any element a e n*(S4"-x), (2i) -a = 2ae nt(S4"-x).

One might wonder whether 2 ~ fife(2i) on Q,kS4n~x for some k. Note [1,

§§11 and 12] that away from Arf invariant one or Hopf invariant one dimen-

sions, k must be at least 3.
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