An explicit family of exotic Casson handles
HTML articles powered by AMS MathViewer
- by Žarko Bižaca
- Proc. Amer. Math. Soc. 123 (1995), 1297-1302
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246517-X
- PDF | Request permission
Abstract:
This paper contains a proof that the Casson handle that contains only one, positive, self-intersection on each level, $C{H^ + }$, is exotic in the sense that the attaching circle of this Casson handle is not smoothly slice in its interior. The proof is an easy consequence of L. Rudolph’s result (Bull. Amer. Math. Soc. (N.S.) 29 (1993), 51-59) that no iterated positive untwisted doubles of the positive trefoil knot is smoothly slice. An explicit infinite family of Casson handles is constructed by using the non-product h-cobordism from Ž. Bižaca (A handle decomposition of an exotic ${\mathbb {R}^4}$, J. Differential Geom. (to appear)), $C{H_n},n \geq 0$, such that $C{H_0}$ is the above-described $C{H^ + }$ and each $C{H_{n + 1}}$ is obtained by the reimbedding algorithm (Ž. Bižaca, A reimbedding algorithm for Casson handles, Trans. Amer. Math. Soc. 345 (1994), 435-510) in the first six levels of $C{H_n}$. An argument that no two of those exotic Casson handles are diffeomorphic is outlined, and it mimics the one from S. DeMichelis and M. Freedman (J. Differential Geom. 17 (1982), 357-453).References
- Selman Akbulut, A fake compact contractible $4$-manifold, J. Differential Geom. 33 (1991), no. 2, 335–356. MR 1094459
- Žarko Bižaca, A reimbedding algorithm for Casson handles, Trans. Amer. Math. Soc. 345 (1994), no. 2, 435–510. MR 1236223, DOI 10.1090/S0002-9947-1994-1236223-3
- Žarko Bižaca, A handle decomposition of an exotic $\textbf {R}^4$, J. Differential Geom. 39 (1994), no. 3, 491–508. MR 1274129
- Andrew J. Casson, Three lectures on new-infinite constructions in $4$-dimensional manifolds, À la recherche de la topologie perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, MA, 1986, pp. 201–244. With an appendix by L. Siebenmann. MR 900253
- Stefano De Michelis and Michael H. Freedman, Uncountably many exotic $\textbf {R}^4$’s in standard $4$-space, J. Differential Geom. 35 (1992), no. 1, 219–254. MR 1152230
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Robert E. Gompf, Infinite families of Casson handles and topological disks, Topology 23 (1984), no. 4, 395–400. MR 780732, DOI 10.1016/0040-9383(84)90002-8
- Robert E. Gompf, Periodic ends and knot concordance, Proceedings of the 1987 Georgia Topology Conference (Athens, GA, 1987), 1989, pp. 141–148. MR 1007986, DOI 10.1016/0166-8641(89)90051-5
- Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI 10.1007/BF01406222
- Robion C. Kirby, The topology of $4$-manifolds, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989. MR 1001966, DOI 10.1007/BFb0089031
- Dieter Kotschick, On manifolds homeomorphic to $\textbf {C}\textrm {P}^2\# 8\overline {\textbf {C}\textrm {P}}{}^2$, Invent. Math. 95 (1989), no. 3, 591–600. MR 979367, DOI 10.1007/BF01393892
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744
- Lee Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51–59. MR 1193540, DOI 10.1090/S0273-0979-1993-00397-5
- Clifford Henry Taubes, Gauge theory on asymptotically periodic $4$-manifolds, J. Differential Geom. 25 (1987), no. 3, 363–430. MR 882829
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1297-1302
- MSC: Primary 57N13; Secondary 57M25, 57R65
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246517-X
- MathSciNet review: 1246517