ABSTRACT. Darboux's lemma states that a closed nondegenerate two-form Ω, defined on an open set in \(\mathbb{R}^{2n} \) (or in a 2n-dimensional manifold), can locally be given the form \(\sum dq_i \wedge dp_i \), in suitable coordinates, traditionally denoted by \(q_1, q_2, \ldots, q_n, p_1, p_2, \ldots, p_n \). There is an elegant proof by J. Moser and A. Weinstein. The author has presented a proof that was extracted from Carathéodory's book on Calculus of Variations. Carathéodory works with a (local) "integral" of \(\Omega \), that is, with a one-form \(\alpha \) satisfying \(d\alpha = \Omega \). It turns out that the proof becomes much more transparent if one works with \(\Omega \) itself.

As in [3] we start by writing \(\Omega \) (locally) as \(\sum_{i=1}^{N} df_i \wedge dg_i \), with some functions \(f_1, f_2, \ldots, f_N, g_1, g_2, \ldots, g_N \), and with \(N \geq n \) of course. (For this step we take an integral \(\alpha \) of \(\Omega \) and write it as \(\sum_{i=1}^{N} f_i df_i \).) We now try to reduce \(N \), if it is larger than \(n \).

Since \(\Omega^n \) is not 0, some \(n \) of the terms in the sum for \(\Omega \) must have nonzero exterior product; the corresponding \(f \)'s and \(g \)'s can then be taken as coordinates \(u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n \) and we can write \(\Omega = \sum_{i=1}^{n} du_i \wedge dv_i + \sum_{i=n+1}^{N} df_j \wedge dg_j \). To this situation we apply a standard classical and basic proposition of Hamiltonian transformation theory [5].

Let \(\omega \) be a closed nondegenerate two-form on an open set in a manifold \(M^{2n} \) (with local coordinates \(x \), when needed), and let \(H \) be a "time-dependent Hamiltonian", i.e., a function \(H(x, t) \) on \(M \times \mathbb{R} \) (or on a suitable open subset thereof). Write \(\omega_H \) for the two-form \(\omega - dH \wedge dt \) (here \(\omega \) has been pulled back to \(M \times \mathbb{R} \) and \(t \) is the standard coordinate on \(\mathbb{R} \)).

Proposition. There exists a (local) diffeomorphism \(F \) of \(M \times \mathbb{R} \) "over \(\mathbb{R} \)"., i.e., of the form \(x' = F(x, t), t' = t \) (or, briefly, of the form \(x' = F(x, t) \)) with inverse \(x = G(x', t) \) such that

\[
F^* \omega_H = \omega \quad \text{and} \quad G^* \omega = \omega_H.
\]

One says that "\(H \) has been reduced to 0 by \(F \)." As a matter of fact, \(F \) is simply the expression for the solutions of the associated "canonical equations" in terms of the initial values for \(t = 0 \). The proof is a simple computation; we bring it, for completeness, at the end.
We apply the proposition to Ω above by using $\sum du_i \wedge dv_i$ as ω and $-f_N$ as H. Thus we have functions $u'_i = \phi_i(u_j, v_j, t)$, $v'_i = \psi_i(u_j, v_j, t)$ such that the equation
\[
\sum du_i \wedge dv_i + df_N \wedge dt = \sum d\phi_i \wedge d\psi_i
\]
holds identically in (u_j, v_j, t). We now substitute the function g_N, from the expression for Ω, for f in this equation (i.e., we take the pullback of the equation under the embedding of M into $M \times \mathbb{R}$ via $x \mapsto (x, g_N(x))$). Thus $\sum du_i \wedge dv_i + df_N \wedge dg_N$ equals $\sum d\Phi_i \wedge d\Psi_i$, where $\Phi_i(u_j, v_j)$ means $\phi_i(u_j, v_j, g_N(u_j, v_j))$ and similarly for Ψ_i. So $\Omega = \sum du_i \wedge dv_i + \sum_{n+1} d\phi_i \wedge d\phi_{i+1}$ equals $\sum d\phi_i \wedge d\psi_i + \sum_{n+1} d\psi_i \wedge d\psi_{i+1}$, and so the number of terms in the expression for Ω has been reduced by 1. Darboux's lemma follows by iteration. □

Now we prove the proposition. We express the usual canonical differential equations of Hamiltonian theory in the language of exterior forms: A vector field \tilde{X} on $M \times \mathbb{R}$ (or on an open subset thereof) will be called Hamiltonian (to H) if
(a) it is of the form (X, ∂_t), where ∂_t is the standard vector field \mathbb{R} (thus $\partial_t f = f'$) and where X at any point (x, t) is tangent to $M \times \mathbb{R}$, so that X is a "time-dependent vector field" on M; and
(b) the substitution operator $i_{\tilde{X}}$ nullifies the form $\omega_H = \omega - dH \wedge dt$.

(For any vector field Y the operator i_Y operates on an exterior form π by substituting Y into the first slot to π. It is characterized by three properties: (1) it nullifies functions (i.e., 0-forms); (2) one has $i_Y dh = dh(Y) = Y.h$ for any function h; (3) it is a (graded) derivation: $i_Y(\Lambda^p) = i_Y \Lambda^p + (-1)^{deg \Lambda^p} \Lambda^p i_Y$.)

We split the differential dH into its M- and \mathbb{R}-components (defined by restriction to the M- or \mathbb{R}-factor at (x, t)); we write this as $dH = dMH + Hdt$. The Hamiltonian condition $i_{\tilde{X}} \omega_H = 0$, i.e., $i_{\tilde{X}} \omega = (i_{\tilde{X}} dH) dt - dH$, means then $i_{\tilde{X}} \omega = -dMH$ and $i_{\tilde{X}} dH = (\tilde{X}, H) = H_t$; the second relation can also be written as $X.H = 0$ or $dMH(X) = 0$ and is a consequence of the first, since ω is skewsymmetric, and so $-dMH(X) = i_X \omega(X) = \omega(X, X) = 0$. Since ω is nondegenerate, the relation $i_{\tilde{X}} \omega = -dMH$ shows that the Hamiltonian field \tilde{X} exists and is unique. For the case $\omega = \sum dp_i \wedge dq_i$ the relation $i_{\tilde{X}} \omega = -dMH$ amounts to the canonical equations $\dot{q}_i = H_{q_i}, \dot{p}_i = -H_{p_i}$.

We now construct the map F of the proposition: as noted after the proposition, it simply sends each line $x \times \mathbb{R}$ to the trajectory of \tilde{X} through $(x, 0)$. (In particular, we have $x = F(x, 0)$.) This is a diffeomorphism by standard theorems about ordinary differential equations. Clearly the vector fields ∂_t on $M \times \mathbb{R}$ map to X under F. It follows that i_{∂_t} nullifies $F^* \omega_H$.

We write $F^* \omega_H$ as $\omega_0 + \beta \wedge dt$, where ω_0 and β are nullified by ∂_t, i.e., do not involve any dt. The relation $i_{\partial_t} F^* \omega_H = 0$ then says $\beta = 0$; so we have $F^* \omega_H = \omega_0$. Since ω_H is closed, so is ω_0; the equation $d\omega_0 = 0$ implies that the t-derivatives of the coefficients a_{ij} of $\omega_0 = \sum a_{ij} dx_i \wedge dx_j$ vanish and that the form ω_0 does not depend on t (for this the domain of definition should be convex in the t-direction and connected). Thus $F^* \omega_H$ is simply a two-form on M, pulled back to $M \times \mathbb{R}$; and finally, since the map F is the identity on the slice $t = 0$, $F^* \omega_H$ equals ω. □
REFERENCES

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305

E-mail address: samelson@gauss.stanford.edu