Darboux’s lemma once more
HTML articles powered by AMS MathViewer
- by Hans Samelson
- Proc. Amer. Math. Soc. 123 (1995), 1253-1255
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246536-3
- PDF | Request permission
Abstract:
Darboux’s lemma states that a closed nondegenerate two-form $\Omega$, defined on an open set in ${\mathbb {R}^{2n}}$ (or in a 2n-dimensional manifold), can locally be given the form $\sum {d{q_i} \wedge d{p_i}}$, in suitable coordinates, traditionally denoted by ${q_1},{q_2}, \ldots ,{q_n},{p_{1,}}{p_2}, \ldots ,{p_n}$. There is an elegant proof by J. Moser and A. Weinstein. The author has presented a proof that was extracted from Carathéodory’s book on Calculus of Variations. Carathéodory works with a (local) "integral" of $\Omega$, that is, with a one-form $\alpha$ satisfying $d\alpha = \Omega$. It turns out that the proof becomes much more transparent if one works with $\Omega$ itself.References
- C. Carathéodory, Variartionsrechnung und partielle Differentialgleichungen erster Ordnung, Teubner, Leipzig, 1935, p. 124; English transl., Calculus of variations and partial differential equations of first order, Holden-Day, San Francisco, 1965, p. 125.
- Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294. MR 182927, DOI 10.1090/S0002-9947-1965-0182927-5
- Hans Samelson, On Darboux’s lemma, Proc. Amer. Math. Soc. 70 (1978), no. 2, 126–128. MR 474367, DOI 10.1090/S0002-9939-1978-0474367-0
- Alan Weinstein, Symplectic structures on Banach manifolds, Bull. Amer. Math. Soc. 75 (1969), 1040–1041. MR 245052, DOI 10.1090/S0002-9904-1969-12353-0
- E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Dover Publications, New York, 1944. Fourth Ed. MR 0010813
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1253-1255
- MSC: Primary 58A10; Secondary 53C15
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246536-3
- MathSciNet review: 1246536