Weighted inequalities for convolutions
HTML articles powered by AMS MathViewer
- by Kenneth F. Andersen
- Proc. Amer. Math. Soc. 123 (1995), 1129-1136
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277088-X
- PDF | Request permission
Abstract:
For certain convolution operators T on ${R^ + }$ or ${R^n}$, sufficient conditions are given which ensure that T is bounded between weighted Lebesgue spaces. The class of operators considered includes many of classical interest; in particular, new inequalities are obtained for the Laplace transform, the Poisson integral on ${R^n} \times {R^ + }$, and Goldberg’s transform.References
- Kenneth F. Andersen and Benjamin Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9–26. MR 665888, DOI 10.4064/sm-72-1-9-26
- Steven Bloom, Hardy integral estimates for the Laplace transform, Proc. Amer. Math. Soc. 116 (1992), no. 2, 417–426. MR 1094497, DOI 10.1090/S0002-9939-1992-1094497-X
- J. Scott Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), no. 4, 405–408. MR 523580, DOI 10.4153/CMB-1978-071-7 G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Second Ed., Cambridge Univ. Press, Cambridge, 1967.
- R. R. Goldberg, An integral transform related to the Hilbert transform, J. London Math. Soc. 35 (1960), 200–204. MR 110929, DOI 10.1112/jlms/s1-35.2.200
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI 10.4064/sm-44-1-31-38
- Benjamin Muckenhoupt, Two weight function norm inequalities for the Poisson integral, Trans. Amer. Math. Soc. 210 (1975), 225–231. MR 374790, DOI 10.1090/S0002-9947-1975-0374790-0
- Richard L. Wheeden and Antoni Zygmund, Measure and integral, Pure and Applied Mathematics, Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977. An introduction to real analysis. MR 0492146
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1129-1136
- MSC: Primary 44A10; Secondary 26D15, 44A35
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277088-X
- MathSciNet review: 1277088