A system of bi-identities for locally inverse semigroups
HTML articles powered by AMS MathViewer
- by K. Auinger
- Proc. Amer. Math. Soc. 123 (1995), 979-988
- DOI: https://doi.org/10.1090/S0002-9939-1995-1291762-0
- PDF | Request permission
Abstract:
A class of regular semigroups closed under taking direct products, regular subsemigroups, and homomorphic images is an existence-variety (or e-variety) of regular semigroups. Each e-variety of locally inverse semigroups can be characterized by a set of bi-identities. These are identities of terms of type $\langle 2,2\rangle$ in two sorts of variables X and $X’$. In this paper we obtain a basis of bi-identities for the e-variety of locally inverse semigroups and for certain sub-e-varieties.References
- Karl Auinger, The bifree locally inverse semigroup on a set, J. Algebra 166 (1994), no. 3, 630–650. MR 1280594, DOI 10.1006/jabr.1994.1169
- Karl Auinger, The word problem for the bifree combinatorial strict regular semigroup, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 3, 519–533. MR 1207517, DOI 10.1017/S0305004100076179
- A. H. Clifford, The free completely regular semigroup on a set, J. Algebra 59 (1979), no. 2, 434–451. MR 543262, DOI 10.1016/0021-8693(79)90139-X
- George Grätzer, Universal algebra, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. MR 0248066
- T. E. Hall, Congruences and Green’s relations on regular semigroups, Glasgow Math. J. 13 (1972), 167–175. MR 318356, DOI 10.1017/S0017089500001610
- T. E. Hall, Identities for existence varieties of regular semigroups, Bull. Austral. Math. Soc. 40 (1989), no. 1, 59–77. MR 1020841, DOI 10.1017/S000497270000349X
- T. E. Hall, Regular semigroups: amalgamation and the lattice of existence varieties, Algebra Universalis 28 (1991), no. 1, 79–102. MR 1083823, DOI 10.1007/BF01190413
- T. E. Hall, A concept of variety for regular semigroups, Monash Conference on Semigroup Theory (Melbourne, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 101–115. MR 1232677
- J. M. Howie, An introduction to semigroup theory, L. M. S. Monographs, No. 7, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0466355
- Jiří Kaďourek and Mária B. Szendrei, A new approach in the theory of orthodox semigroups, Semigroup Forum 40 (1990), no. 3, 257–296. MR 1038007, DOI 10.1007/BF02573274
- John Meakin, Local semilattices on two generators, Semigroup Forum 24 (1982), no. 2-3, 95–116. MR 650566, DOI 10.1007/BF02572763
- John Meakin, The free local semilattice on a set, J. Pure Appl. Algebra 27 (1983), no. 3, 263–275. MR 688758, DOI 10.1016/0022-4049(83)90019-1
- John Meakin and Francis Pastijn, The structure of pseudosemilattices, Algebra Universalis 13 (1981), no. 3, 355–372. MR 631728, DOI 10.1007/BF02483846
- John Meakin and Francis Pastijn, The free pseudosemilattice on two generators, Algebra Universalis 14 (1982), no. 3, 297–309. MR 654399, DOI 10.1007/BF02483934
- K. S. S. Nambooripad, Structure of regular semigroups. I, Mem. Amer. Math. Soc. 22 (1979), no. 224, vii+119. MR 546362, DOI 10.1090/memo/0224
- K. S. Subramonian Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. (2) 23 (1980), no. 3, 249–260. MR 620922, DOI 10.1017/S0013091500003801
- K. S. S. Nambooripad, Pseudosemilattices and biordered sets. I, Simon Stevin 55 (1981), no. 3, 103–110. MR 635096
- K. S. S. Nambooripad, Pseudosemilattices and biordered sets. II. Pseudo-inverse semigroups, Simon Stevin 56 (1982), no. 3, 143–159. MR 669189
- K. S. S. Nambooripad, Pseudosemilattices and biordered sets. II. Pseudo-inverse semigroups, Simon Stevin 56 (1982), no. 3, 143–159. MR 669189
- F. Pastijn, Rectangular bands of inverse semigroups, Simon Stevin 56 (1982), no. 1-2, 3–95. MR 662981
- F. Pastijn, The structure of pseudo-inverse semigroups, Trans. Amer. Math. Soc. 273 (1982), no. 2, 631–655. MR 667165, DOI 10.1090/S0002-9947-1982-0667165-1
- Mario Petrich, Inverse semigroups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 752899 B. M. Schein, Pseudosemilattices and pseudolattices, Izv. Vyssh. Uchebn. Zaved. Mat. 117 (1972), 81-94; English transl.Amer. Math. Soc. Transl. 119 (1983), 1-16.
- Mária B. Szendrei, Free $^\ast$-orthodox semigroups, Simon Stevin 59 (1985), no. 2, 175–201. MR 805105
- P. G. Trotter, Normal partitions of idempotents of regular semigroups, J. Austral. Math. Soc. Ser. A 26 (1978), no. 1, 110–114. MR 510594
- Y. T. Yeh, The existence of $e$-free objects in $e$-varieties of regular semigroups, Internat. J. Algebra Comput. 2 (1992), no. 4, 471–484. MR 1189674, DOI 10.1142/S0218196792000281
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 979-988
- MSC: Primary 20M18
- DOI: https://doi.org/10.1090/S0002-9939-1995-1291762-0
- MathSciNet review: 1291762