Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the compactness of strongly continuous semigroups and cosine functions of operators

Author: Hernán R. Henríquez
Journal: Proc. Amer. Math. Soc. 123 (1995), 1417-1424
MSC: Primary 47D03; Secondary 47B07, 47D09
MathSciNet review: 1227517
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we relate two notions of compactness for strongly continuous semigroups of linear operators and cosine functions of linear operators. Specifically, if T denotes a strongly continuous semigroup of linear operators defined on a Banach space X, we will show that T is compact if and only if the set $\{ (T( \bullet )x:x \in X,\left \| x \right \| \leq 1\}$ is relatively compact in any space ${L^p}([0,a]);X)$ for $1 \leq p < \infty$ and $a > 0$. We establish similar results for ${(T(t) - I)^n},n \in {\mathbf {N}}$, and for cosine and sine functions of operators.

References [Enhancements On Off] (What's this?)

  • Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404
  • H. O. Fattorini, Second order linear differential equations in Banach spaces, North-Holland Mathematics Studies, vol. 108, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 99. MR 797071
  • H. R. Henríquez, Uma propriedade compacidade para familias cosseno de operadores, Proc. $14^\circ$ Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brasil, 1983, pp. 71-80. ---, Una nota sobre la compacidad de funciones coseno de operadores, Revista Proyecciones 6 (1987), 35-46.
  • Hernán R. Henríquez, Periodic solutions of quasi-linear partial functional-differential equations with unbounded delay, Funkcial. Ekvac. 37 (1994), no. 2, 329–343. MR 1299869
  • James H. Lightbourne III, Periodic solutions and perturbed semigroups of linear operators, Nonlinear systems and applications (Proc. Internat. Conf., Univ. Texas, Arlington, Tex., 1976) Academic Press, New York, 1977, pp. 591–602. MR 0458263
  • Charles-Michel Marle, Mesures et probabilités, Hermann, Paris, 1974 (French). Collection Enseignement des Sciences, No. 19. MR 0486378
  • W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450
  • A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
  • Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
  • C. C. Travis and G. F. Webb, Second order differential equations in Banach space, Nonlinear equations in abstract spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex., 1977) Academic Press, New York, 1978, pp. 331–361. MR 502551
  • C. C. Travis and G. F. Webb, Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, Houston J. Math. 3 (1977), no. 4, 555–567. MR 500288
  • I. I. Vrabie, Compactness methods for nonlinear evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. With a foreword by A. Pazy. MR 932730
  • L. W. Weis, A generalization of the Vidav-Jörgens perturbation theorem for semigroups and its application to transport theory, J. Math. Anal. Appl. 129 (1988), no. 1, 6–23. MR 921374, DOI

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D03, 47B07, 47D09

Retrieve articles in all journals with MSC: 47D03, 47B07, 47D09

Additional Information

Keywords: Semigroup of operators, cosine functions of operators, compact operators
Article copyright: © Copyright 1995 American Mathematical Society