## Invariant theory for a parabolic subgroup of $\textrm {SL}(n+1,\textbf {R})$

HTML articles powered by AMS MathViewer

- by A. Rod Gover
- Proc. Amer. Math. Soc.
**123**(1995), 1543-1553 - DOI: https://doi.org/10.1090/S0002-9939-1995-1231035-5
- PDF | Request permission

## Abstract:

For a certain maximal parabolic*P*of ${\text {SL}}(n + 1,\mathbb {R})$, the complete invariant theory is presented for a class of

*P*-representation modules. These modules arise naturally from the geometry of ${\mathbb {P}^n}$. In particular, a means of listing all the exceptional invariants is described. This is a model problem for some parabolic invariant theory problems posed by Fefferman.

## References

- Toby N. Bailey, Michael G. Eastwood, and C. Robin Graham,
*Invariant theory for conformal and CR geometry*, Ann. of Math. (2)**139**(1994), no. 3, 491–552. MR**1283869**, DOI 10.2307/2118571 - Toby N. Bailey and A. Rod Gover,
*Exceptional invariants in the parabolic invariant theory of conformal geometry*, Proc. Amer. Math. Soc.**123**(1995), no. 8, 2535–2543. MR**1243161**, DOI 10.1090/S0002-9939-1995-1243161-5 - Michael G. Eastwood and C. Robin Graham,
*Invariants of conformal densities*, Duke Math. J.**63**(1991), no. 3, 633–671. MR**1121149**, DOI 10.1215/S0012-7094-91-06327-1 - Charles Fefferman,
*Parabolic invariant theory in complex analysis*, Adv. in Math.**31**(1979), no. 2, 131–262. MR**526424**, DOI 10.1016/0001-8708(79)90025-2 - A. Rod Gover,
*Invariants on projective space*, J. Amer. Math. Soc.**7**(1994), no. 1, 145–158. MR**1214703**, DOI 10.1090/S0894-0347-1994-1214703-8
—, - C. Robin Graham,
*Invariant theory of parabolic geometries*, Complex geometry (Osaka, 1990) Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 53–66. MR**1201601** - Anthony W. Knapp,
*Lie groups, Lie algebras, and cohomology*, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR**938524** - Hermann Weyl,
*The classical groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR**1488158**

*Invariants and calculus for projective geometries*, preprint.

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 1543-1553 - MSC: Primary 53A55; Secondary 15A72, 53A45, 53C30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231035-5
- MathSciNet review: 1231035