Invariant theory for a parabolic subgroup of $\textrm {SL}(n+1,\textbf {R})$
HTML articles powered by AMS MathViewer
- by A. Rod Gover
- Proc. Amer. Math. Soc. 123 (1995), 1543-1553
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231035-5
- PDF | Request permission
Abstract:
For a certain maximal parabolic P of ${\text {SL}}(n + 1,\mathbb {R})$, the complete invariant theory is presented for a class of P-representation modules. These modules arise naturally from the geometry of ${\mathbb {P}^n}$. In particular, a means of listing all the exceptional invariants is described. This is a model problem for some parabolic invariant theory problems posed by Fefferman.References
- Toby N. Bailey, Michael G. Eastwood, and C. Robin Graham, Invariant theory for conformal and CR geometry, Ann. of Math. (2) 139 (1994), no. 3, 491–552. MR 1283869, DOI 10.2307/2118571
- Toby N. Bailey and A. Rod Gover, Exceptional invariants in the parabolic invariant theory of conformal geometry, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2535–2543. MR 1243161, DOI 10.1090/S0002-9939-1995-1243161-5
- Michael G. Eastwood and C. Robin Graham, Invariants of conformal densities, Duke Math. J. 63 (1991), no. 3, 633–671. MR 1121149, DOI 10.1215/S0012-7094-91-06327-1
- Charles Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math. 31 (1979), no. 2, 131–262. MR 526424, DOI 10.1016/0001-8708(79)90025-2
- A. Rod Gover, Invariants on projective space, J. Amer. Math. Soc. 7 (1994), no. 1, 145–158. MR 1214703, DOI 10.1090/S0894-0347-1994-1214703-8 —, Invariants and calculus for projective geometries, preprint.
- C. Robin Graham, Invariant theory of parabolic geometries, Complex geometry (Osaka, 1990) Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 53–66. MR 1201601
- Anthony W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR 938524
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1543-1553
- MSC: Primary 53A55; Secondary 15A72, 53A45, 53C30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231035-5
- MathSciNet review: 1231035