Numerical radius preserving operators on $B(H)$
HTML articles powered by AMS MathViewer
- by Jor-Ting Chan
- Proc. Amer. Math. Soc. 123 (1995), 1437-1439
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231293-7
- PDF | Request permission
Abstract:
Let H be a Hilbert space over $\mathbb {C}$ and let $B(H)$ denote the vector space of all bounded linear operators on H. We prove that a linear isomorphism $T:B(H) \to B(H)$ is numerical radius-preserving if and only if it is a multiply of a ${C^ \ast }$-isomorphism by a scalar of modulus one.References
- Chi-Kwong Li, Linear operators preserving the numerical radius of matrices, Proc. Amer. Math. Soc. 99 (1987), no. 4, 601–608. MR 877024, DOI 10.1090/S0002-9939-1987-0877024-7
- Chi-Kwong Li and Nam-Kiu Tsing, Linear operators that preserve the $c$-numerical range or radius of matrices, Linear and Multilinear Algebra 23 (1988), no. 1, 27–46. MR 943767, DOI 10.1080/03081088808817854
- M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97–105 (English, with Ukrainian summary). MR 3467, DOI 10.4064/sm-9-1-97-105
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952, DOI 10.1007/978-1-4684-9330-6
- Ali A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), no. 2, 255–261. MR 832991, DOI 10.1016/0022-1236(86)90073-X
- Richard V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325–338. MR 43392, DOI 10.2307/1969534
- Richard V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. (2) 56 (1952), 494–503. MR 51442, DOI 10.2307/1969657
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR 719020
- V. J. Pellegrini, Numerical range preserving operators on a Banach algebra, Studia Math. 54 (1975), no. 2, 143–147. MR 388104, DOI 10.4064/sm-54-2-143-147
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1437-1439
- MSC: Primary 47A12; Secondary 47B49
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231293-7
- MathSciNet review: 1231293