Gaussian estimates and holomorphy of semigroups
HTML articles powered by AMS MathViewer
- by El-Maati Ouhabaz PDF
- Proc. Amer. Math. Soc. 123 (1995), 1465-1474 Request permission
Abstract:
We show that if a selfadjoint semigroup T on ${L^2}(\Omega )$ satisfies a Gaussian estimate $|T(t)f| \leq MG(bt)|f|,0 \leq t \leq 1,f \in {L^2}(\Omega )$ (where $G = G{(t)_{t \geq 0}}$ is the Gaussian semigroup on ${L^2}({R^N})$ and $\Omega$ is an open set of ${R^N}$), then T defines a holomorphic semigroup of angle $\frac {\pi }{2}$ on ${L^p}(\Omega )$ . We obtain by duality the same result on ${C_0}(\Omega )$. Applications to uniformly elliptic operators and Schrödinger operators are given.References
- Sergio Albeverio, Philippe Blanchard, and Zhi Ming Ma, Feynman-Kac semigroups in terms of signed smooth measures, Random partial differential equations (Oberwolfach, 1989) Internat. Ser. Numer. Math., vol. 102, Birkhäuser, Basel, 1991, pp. 1–31. MR 1185735, DOI 10.1007/978-3-0348-6413-8_{1}
- Herbert Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), no. 2-3, 225–254. MR 719122, DOI 10.1007/BF02774019
- W. Arendt and C. J. K. Batty, Absorption semigroups and Dirichlet boundary conditions, Math. Ann. 295 (1993), no. 3, 427–448. MR 1204830, DOI 10.1007/BF01444895
- Thierry Cazenave and Alain Haraux, Introduction aux problèmes d’évolution semi-linéaires, Mathématiques & Applications (Paris) [Mathematics and Applications], vol. 1, Ellipses, Paris, 1990 (French). MR 1299976 R. Dautray and J. L. Lions, Analyse mathematiques et calcul numerique, Vol. 2, Masson, Paris, 1988.
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- M. Demuth and J. A. van Casteren, On spectral theory of selfadjoint Feller generators, Rev. Math. Phys. 1 (1989), no. 4, 325–414. MR 1061118, DOI 10.1142/S0129055X89000158
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443, DOI 10.1007/978-3-642-96379-7
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473 —, ${L^p}$-theory of Schrödinger operators, Aspects of Positivity in Functional Analysis (R. Nagel, U. Schlotterbeck, and M. Wolff, eds.), North-Holland, Amsterdam, 1986, pp. 63-78.
- Gunter Lumer and Luc Paquet, Semi-groupes holomorphes et équations d’évolution, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 4, A237–A240. MR 428106 —, Semi-groupes holomorphes, produit tensoriel de semi-groupes et equations d’evolution, Sem. Théorie du Potential, no. 4 (1977/78) (F. Hirsch and F. Mokobodzki, eds.), Lecture Notes in Math., vol. 713, Springer-Verlag, Berlin, 1979.
- W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450, DOI 10.1007/BFb0074922
- El-Maati Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups, Potential Anal. 5 (1996), no. 6, 611–625. MR 1437587, DOI 10.1007/BF00275797
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- Jean-Pierre Roth, Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 4, ix, 1–97 (French, with English summary). MR 448158
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
- H. Bruce Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc. 199 (1974), 141–162. MR 358067, DOI 10.1090/S0002-9947-1974-0358067-4
- H. Bruce Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc. 259 (1980), no. 1, 299–310. MR 561838, DOI 10.1090/S0002-9947-1980-0561838-5
- Peter Stollmann and Jürgen Voigt, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), no. 2, 109–138. MR 1378151, DOI 10.1007/BF00396775
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1465-1474
- MSC: Primary 47D06; Secondary 47F05, 47N20
- DOI: https://doi.org/10.1090/S0002-9939-1995-1232142-3
- MathSciNet review: 1232142