A geometric approach to an equation of J. D’Alembert
HTML articles powered by AMS MathViewer
- by A. Pràstaro and Th. M. Rassias
- Proc. Amer. Math. Soc. 123 (1995), 1597-1606
- DOI: https://doi.org/10.1090/S0002-9939-1995-1232143-5
- PDF | Request permission
Abstract:
By using a geometric framework of PDE’s we prove that the set of solutions of the D’Alembert equation $( \ast )(\frac {{{\partial ^2}\log f}}{{\partial x\partial y}}) = 0$ is larger than the set of smooth functions of two variables $f(x,y)$ of the form $( \ast \ast )f(x,y) = h(x) \bullet g(y)$. This agrees with a previous counterexample by Th. M. Rassias given to a statement by C. M. Stéphanos. More precisely, we have the following result. Theorem. The set of 2-dimensional integral manifolds of PDE $( \ast )$ properly contains the ones representable by graphs of 2-jet-derivatives of functions $f(x,y)$ expressed in the form $( \ast \ast )$. A generalization of this result to functions of more than two variables is sketched also by considering the equation $(\frac {{{\partial ^n}\log f}}{{\partial {x_1} \cdots \partial {x_n}}}) = 0$.References
- Martin Čadek and Jaromír Šimša, Decomposable functions of several variables, Aequationes Math. 40 (1990), no. 1, 8–25. MR 1055187, DOI 10.1007/BF02112277
- Martin Čadek and Jaromír Šimša, Decomposition of smooth functions of two multidimensional variables, Czechoslovak Math. J. 41(116) (1991), no. 2, 342–358. MR 1105450, DOI 10.21136/CMJ.1991.102467 J. D’Alembert, Recherches sur la courbe que forme une corde tendue mise en vibration I-II, Hist. Acad. Berlin (1747), 214-249.
- Hillel Gauchman and Lee A. Rubel, Sums of products of functions of $x$ times functions of $y$, Linear Algebra Appl. 125 (1989), 19–63. MR 1024482, DOI 10.1016/0024-3795(89)90031-1
- Victor W. Guillemin and Shlomo Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16–47. MR 170295, DOI 10.1090/S0002-9904-1964-11019-3
- Hubert Goldschmidt, Integrability criteria for systems of nonlinear partial differential equations, J. Differential Geometry 1 (1967), 269–307. MR 226156
- David Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), no. 10, 437–479. MR 1557926, DOI 10.1090/S0002-9904-1902-00923-3
- I. S. Krasil′shchik, V. V. Lychagin, and A. M. Vinogradov, Geometry of jet spaces and nonlinear partial differential equations, Advanced Studies in Contemporary Mathematics, vol. 1, Gordon and Breach Science Publishers, New York, 1986. Translated from the Russian by A. B. Sosinskiĭ. MR 861121 V. Lychagin, Geometric theory of singularities of solutions of nonlinear differential equations, J. Soviet Math. 51 (1990), 2735-2757.
- F. Neuman, Functions of two variables and matrices involving factorizations, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), no. 1, 7–11. MR 608675
- František Neuman, Factorizations of matrices and functions of two variables, Czechoslovak Math. J. 32(107) (1982), no. 4, 582–588. MR 682133, DOI 10.21136/CMJ.1982.101835
- František Neuman, Finite sums of products of functions in single variables, Linear Algebra Appl. 134 (1990), 153–164. MR 1060018, DOI 10.1016/0024-3795(90)90014-4
- František Neuman and Themistocles M. Rassias, Functions decomposable into finite sums of products (old and new results, problems and trends), Constantin Carathéodory: an international tribute, Vol. I, II, World Sci. Publ., Teaneck, NJ, 1991, pp. 956–963. MR 1130873 A. Prástaro, Quantum geometry of PDE’s, Rep. Math. Phys. 30 (1991), 273-354.
- Themistocles M. Rassias, A criterion for a function to be represented as a sum of products of factors, Bull. Inst. Math. Acad. Sinica 14 (1986), no. 4, 377–382. MR 885367 —, Problem P 286, Aequationes Math. 38 (1989), 111-112. Th. M. Rassias and J. Šimša, Finite sums decompositions in mathematical analysis, Wiley, New York.
- Jaromír Šimša, A note on certain functional determinants, Aequationes Math. 44 (1992), no. 1, 35–41. MR 1165781, DOI 10.1007/BF01834202
- Jaromír Šimša, The best $L^2$-approximation by finite sums of functions with separable variables, Aequationes Math. 43 (1992), no. 2-3, 248–263. MR 1158733, DOI 10.1007/BF01835707 —, Stability of a differential criterion for decomposable functions of two variables (to appear). C. M. Stéphanos, Sur une categorie d’équations fonctionelles, Rend. Circ. Mat. Palermo (2) 18 (1904), 360-362. —, Sur une categorie d’equations fonctionnelles, Math. Kongress, Heidelberg (1904), 200-201; (1905)10, 194.
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- A. M. Vinogradov, The geometry of nonlinear differential equations, Problems in geometry, Vol. 11 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980, pp. 89–134, 243 (Russian). MR 579929
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1597-1606
- MSC: Primary 58A15; Secondary 58G99
- DOI: https://doi.org/10.1090/S0002-9939-1995-1232143-5
- MathSciNet review: 1232143