Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a sequence transformation with integral coefficients for Euler’s constant


Author: C. Elsner
Journal: Proc. Amer. Math. Soc. 123 (1995), 1537-1541
MSC: Primary 11Y60; Secondary 40A05, 65B05
DOI: https://doi.org/10.1090/S0002-9939-1995-1233969-4
MathSciNet review: 1233969
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\gamma$ denote Euler’s constant, and let \[ {s_n} = \left ( {1 + \frac {1}{2} + \cdots + \frac {1}{{n - 1}}} \right ) - \log n\quad (n \geq 2).\] We prove by Ser’s formula for the remainder $\gamma - {s_n}$ that for all integers $n \geq 1$ and $\tau \geq 2$ there are integers ${\mu _{n,0,}}{\mu _{n,1}}, \ldots ,{\mu _{n,n}}$ such that \[ {\mu _{n,0}}{s_\tau } + {\mu _{n,1}}{s_{\tau + 1}} + \cdots + {\mu _{n,n}}{s_{\tau + n}} = \gamma + {O_\tau }({(n(n + 1)(n + 2) \bullet \cdots \bullet (n + \tau ))^{ - 1}}),\] where the constant in ${O_\tau }$ depends only on $\tau$. The coefficients ${\mu _{n,k}}$ are explicitly given and are bounded by ${2^{3n + \tau - 1}}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11Y60, 40A05, 65B05

Retrieve articles in all journals with MSC: 11Y60, 40A05, 65B05


Additional Information

Article copyright: © Copyright 1995 American Mathematical Society