On tree ideals
HTML articles powered by AMS MathViewer
- by Martin Goldstern, Miroslav Repický, Saharon Shelah and Otmar Spinas
- Proc. Amer. Math. Soc. 123 (1995), 1573-1581
- DOI: https://doi.org/10.1090/S0002-9939-1995-1233972-4
- PDF | Request permission
Abstract:
Let ${l^0}$ and ${m^0}$ be the ideals associated with Laver and Miller forcing, respectively. We show that ${\mathbf {add}}({l^0}) < {\mathbf {cov}}({l^0})$ and ${\mathbf {add}}({m^0}) < {\mathbf {cov}}({m^0})$ are consistent. We also show that both Laver and Miller forcing collapse the continuum to a cardinal $\leq \mathfrak {h}$.References
- Tomek Bartoszyński, Haim Judah, and Saharon Shelah, The Cichoń diagram, J. Symbolic Logic 58 (1993), no. 2, 401–423. MR 1233917, DOI 10.2307/2275212
- Bohuslav Balcar, Jan Pelant, and Petr Simon, The space of ultrafilters on $\textbf {N}$ covered by nowhere dense sets, Fund. Math. 110 (1980), no. 1, 11–24. MR 600576, DOI 10.4064/fm-110-1-11-24
- James E. Baumgartner and Richard Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), no. 3, 271–288. MR 556894, DOI 10.1016/0003-4843(79)90010-X
- Martin Goldstern, Mark J. Johnson, and Otmar Spinas, Towers on trees, Proc. Amer. Math. Soc. 122 (1994), no. 2, 557–564. MR 1284459, DOI 10.1090/S0002-9939-1994-1284459-3
- Haim Judah, Arnold W. Miller, and Saharon Shelah, Sacks forcing, Laver forcing, and Martin’s axiom, Arch. Math. Logic 31 (1992), no. 3, 145–161. MR 1147737, DOI 10.1007/BF01269943
- Haim Judah and Saharon Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), J. Symbolic Logic 55 (1990), no. 3, 909–927. MR 1071305, DOI 10.2307/2274464
- Alexander S. Kechris, On a notion of smallness for subsets of the Baire space, Trans. Amer. Math. Soc. 229 (1977), 191–207. MR 450070, DOI 10.1090/S0002-9947-1977-0450070-1
- Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI 10.1007/BF02392416
- Arnold W. Miller, Rational perfect set forcing, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 143–159. MR 763899, DOI 10.1090/conm/031/763899
- Szymon Plewik, On completely Ramsey sets, Fund. Math. 127 (1987), no. 2, 127–132. MR 882622, DOI 10.4064/fm-127-2-127-132
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1573-1581
- MSC: Primary 03E05; Secondary 03E40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1233972-4
- MathSciNet review: 1233972