On the solutions of the equation $x^ m+y^ m-z^ m=1$ in a finite field
HTML articles powered by AMS MathViewer
- by Wen Fong Ke and Hubert Kiechle
- Proc. Amer. Math. Soc. 123 (1995), 1331-1339
- DOI: https://doi.org/10.1090/S0002-9939-1995-1234628-4
- PDF | Request permission
Abstract:
An explicit formula for the number of solutions of the equation in the title is given when a certain condition, depending only on m and the characteristic of the field, holds.References
- James R. Clay, Circular block designs from planar near-rings, Combinatorics ’86 (Trento, 1986) Ann. Discrete Math., vol. 37, North-Holland, Amsterdam, 1988, pp. 95–105. MR 931309, DOI 10.1016/S0167-5060(08)70229-2
- James R. Clay, Nearrings, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. Geneses and applications. MR 1206901
- James R. Clay and Hubert Kiechle, Linear codes from planar nearrings and Möbius planes, Algebras Groups Geom. 10 (1993), no. 4, 333–344. MR 1250686
- L. E. Dickson, Cyclotomy, Higher Congruences, and Waring’s Problem, Amer. J. Math. 57 (1935), no. 2, 391–424. MR 1507083, DOI 10.2307/2371217 —, Congruences involving only e-th powers, Acta Arith. 1 (1936), 161-167.
- Olin B. Faircloth, On the number of solutions of some general types of equations in a finite field, Canad. J. Math. 4 (1952), 343–351. MR 47694, DOI 10.4153/cjm-1952-030-0
- L. K. Hua and H. S. Vandiver, Characters over certain types of rings with applications to the theory of equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 94–99. MR 28895, DOI 10.1073/pnas.35.2.94
- Loo-Keng Hua and H. S. Vandiver, On the number of solutions of some trinomial equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 477–481. MR 32679, DOI 10.1073/pnas.35.8.477
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716, DOI 10.1007/978-1-4757-2103-4 J.-R. Joly, Équations et variétés algébriques sur un corps fini, Enseign. Math. (2) 19 (1973), 1-117. W.-F. Ke, Structures of circular planar nearings, Ph.D. dissertaton, Univ. Arizona, Tucson, 1992. W.-F. Ke and H. Kiechle, Combinatorial properties of ring generated circular planar nearings (submitted).
- D. H. Lehmer, The number of solutions of a certain congruence involving the sum of like powers, Utilitas Math. 39 (1991), 65–89. MR 1119764
- Howard H. Mitchell, On the congruence $cx^\lambda +1\equiv dy^\lambda$ in a Galois field, Ann. of Math. (2) 18 (1917), no. 3, 120–131. MR 1503593, DOI 10.2307/2007117 M. C. Modisett, A characterization of the circularity of certain balanced incomplete block designs, Ph.D. dissertation, Univ. Arizona, Tucson, 1988.
- Matthew Clayton Modisett, A characterization of the circularity of balanced incomplete block designs, Utilitas Math. 35 (1989), 83–94. MR 992392
- Qi Sun, The diagonal equation over a finite field $F_p$, Sichuan Daxue Xuebao 26 (1989), no. 2, 159–162 (Chinese, with English summary). MR 1017018
- André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508. MR 29393, DOI 10.1090/S0002-9904-1949-09219-4
- Jacques Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory 42 (1992), no. 3, 247–257. MR 1189504, DOI 10.1016/0022-314X(92)90091-3
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1331-1339
- MSC: Primary 11D79; Secondary 11T30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1234628-4
- MathSciNet review: 1234628