## On the covering and the additivity number of the real line

HTML articles powered by AMS MathViewer

- by Kyriakos Keremedis
- Proc. Amer. Math. Soc.
**123**(1995), 1583-1590 - DOI: https://doi.org/10.1090/S0002-9939-1995-1234629-6
- PDF | Request permission

## Abstract:

We show that the real line*R*cannot be covered by

*k*many nowhere dense sets iff

*whenever*$D = \{ {D_i}:i \in k\}$

*is a family of dense open sets of R there exists a countable dense set G of R such that*$|G\backslash {D_i}| < \omega$

*for all*$i \in k$. We also show that the union of

*k*meagre sets of the real line is a meagre set iff

*for every family*$D = \{ {D_i}:i \in k\}$

*of dense open sets of R and for every countable dense set G of R there exists a dense set*$Q \subseteq G$

*such that*$|Q\backslash {D_{i}}| < \omega$

*for all*$i \in k$.

## References

- Tomek Bartoszyński,
*Additivity of measure implies additivity of category*, Trans. Amer. Math. Soc.**281**(1984), no. 1, 209–213. MR**719666**, DOI 10.1090/S0002-9947-1984-0719666-7 - Tomek Bartoszyński,
*Combinatorial aspects of measure and category*, Fund. Math.**127**(1987), no. 3, 225–239. MR**917147**, DOI 10.4064/fm-127-3-225-239 - Tomek Bartoszyński and Jaime I. Ihoda,
*On the cofinality of the smallest covering of the real line by meager sets*, J. Symbolic Logic**54**(1989), no. 3, 828–832. MR**1011171**, DOI 10.2307/2274744 - Tomek Bartoszyński, Jaime I. Ihoda, and Saharon Shelah,
*The cofinality of cardinal invariants related to measure and category*, J. Symbolic Logic**54**(1989), no. 3, 719–726. MR**1011163**, DOI 10.2307/2274736 - Eric K. van Douwen,
*The integers and topology*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR**776622**
D. H. Fremlin, - Thomas Jech,
*Set theory*, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**506523** - Kyriakos Keremedis,
*Partition reals and the consistency of $\mathfrak {t}<\textrm {add}(\textbf {R})$*, Math. Logic Quart.**39**(1993), no. 4, 545–550. MR**1270399**, DOI 10.1002/malq.19930390156 - Kenneth Kunen,
*Set theory*, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR**756630** - Kenneth Kunen,
*Random and Cohen reals*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 887–911. MR**776639** - Arnold W. Miller,
*A characterization of the least cardinal for which the Baire category theorem fails*, Proc. Amer. Math. Soc.**86**(1982), no. 3, 498–502. MR**671224**, DOI 10.1090/S0002-9939-1982-0671224-2 - Arnold W. Miller,
*The Baire category theorem and cardinals of countable cofinality*, J. Symbolic Logic**47**(1982), no. 2, 275–288. MR**654788**, DOI 10.2307/2273142 - Arnold W. Miller,
*Some properties of measure and category*, Trans. Amer. Math. Soc.**266**(1981), no. 1, 93–114. MR**613787**, DOI 10.1090/S0002-9947-1981-0613787-2 - Jerry E. Vaughan,
*Small uncountable cardinals and topology*, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 195–218. With an appendix by S. Shelah. MR**1078647**

*The partially ordered sets of measure and category and Tukey’s ordering*, preprint. —,

*Cichon’s diagram*, Seminaire d’Initiation a l’Analyse (G. Choque, M. Rogalski, and J. Saint Raymond, eds.), 23eme anne: 1983-1984, Université Pierre et Marie Curie, (Paris-VI), Paris, expose 5.

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 1583-1590 - MSC: Primary 03E35; Secondary 03E05, 03E40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1234629-6
- MathSciNet review: 1234629