On the covering and the additivity number of the real line
HTML articles powered by AMS MathViewer
- by Kyriakos Keremedis
- Proc. Amer. Math. Soc. 123 (1995), 1583-1590
- DOI: https://doi.org/10.1090/S0002-9939-1995-1234629-6
- PDF | Request permission
Abstract:
We show that the real line R cannot be covered by k many nowhere dense sets iff whenever $D = \{ {D_i}:i \in k\}$ is a family of dense open sets of R there exists a countable dense set G of R such that $|G\backslash {D_i}| < \omega$ for all $i \in k$. We also show that the union of k meagre sets of the real line is a meagre set iff for every family $D = \{ {D_i}:i \in k\}$ of dense open sets of R and for every countable dense set G of R there exists a dense set $Q \subseteq G$ such that $|Q\backslash {D_{i}}| < \omega$ for all $i \in k$.References
- Tomek Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), no. 1, 209–213. MR 719666, DOI 10.1090/S0002-9947-1984-0719666-7
- Tomek Bartoszyński, Combinatorial aspects of measure and category, Fund. Math. 127 (1987), no. 3, 225–239. MR 917147, DOI 10.4064/fm-127-3-225-239
- Tomek Bartoszyński and Jaime I. Ihoda, On the cofinality of the smallest covering of the real line by meager sets, J. Symbolic Logic 54 (1989), no. 3, 828–832. MR 1011171, DOI 10.2307/2274744
- Tomek Bartoszyński, Jaime I. Ihoda, and Saharon Shelah, The cofinality of cardinal invariants related to measure and category, J. Symbolic Logic 54 (1989), no. 3, 719–726. MR 1011163, DOI 10.2307/2274736
- Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 776622 D. H. Fremlin, The partially ordered sets of measure and category and Tukey’s ordering, preprint. —, Cichon’s diagram, Seminaire d’Initiation a l’Analyse (G. Choque, M. Rogalski, and J. Saint Raymond, eds.), 23eme anne: 1983-1984, Université Pierre et Marie Curie, (Paris-VI), Paris, expose 5.
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Kyriakos Keremedis, Partition reals and the consistency of $\mathfrak {t}<\textrm {add}(\textbf {R})$, Math. Logic Quart. 39 (1993), no. 4, 545–550. MR 1270399, DOI 10.1002/malq.19930390156
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR 756630
- Kenneth Kunen, Random and Cohen reals, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 887–911. MR 776639
- Arnold W. Miller, A characterization of the least cardinal for which the Baire category theorem fails, Proc. Amer. Math. Soc. 86 (1982), no. 3, 498–502. MR 671224, DOI 10.1090/S0002-9939-1982-0671224-2
- Arnold W. Miller, The Baire category theorem and cardinals of countable cofinality, J. Symbolic Logic 47 (1982), no. 2, 275–288. MR 654788, DOI 10.2307/2273142
- Arnold W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), no. 1, 93–114. MR 613787, DOI 10.1090/S0002-9947-1981-0613787-2
- Jerry E. Vaughan, Small uncountable cardinals and topology, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 195–218. With an appendix by S. Shelah. MR 1078647
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1583-1590
- MSC: Primary 03E35; Secondary 03E05, 03E40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1234629-6
- MathSciNet review: 1234629