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ON DAHLBERG'S LUSIN AREA INTEGRAL THEOREM

MARIUS mitrea

(Communicated by J. Marshall Ash)

Abstract. We give new proofs to the Lusin area integral theorem of Dahlberg.

Our techniques rely on the theory of elliptic boundary value problems on non-

smooth domains and are shown to extend to other important cases, including

systems of equations.

1.   Introduction

The graph version of the Lusin area integral theorem of Dahlberg [Dl] asserts

that for any harmonic function u vanishing at infinity in Q one has

(1) /   \u(X)\2dS(X) < C [[ \s7u(X)\2ô(X)dX
Jan JJci

and

(2) // | y u(X)\2S(X) dX<C f   \u(X)\2dS(X).
J Jo. Jon

Here Q is an unbounded Lipschitz domain in E"+1, S(X) := dist(X, dCl),
dS is the surface area on dCl, and all constants depend solely on the Lipschitz

character of <9Q. In fact, (1) and (2) also hold true in the case in which Q is a
bounded Lipschitz domain, provided u is normalized by u(P) = 0, for some

fixed P £ Q.
Inequalities of this type have a long history going back (at least for the upper

half space) to the work of Calderón [Ca], Segovia [S], Burkholder and Gundy
[BG], Fefferman and Stein [FS]. Actually, if Q is a bounded sufficiently smooth
domain, then so is Ô, and then (1) and (2) follow by simple integrations by

parts (see, e.g., p. 279 in [Ne]). Without attempting to give a complete account

of work related to this subject, we will just mention that in the case of an

unbounded Lipschitz domain in C inequalities of this type have been also

obtained in [Kl] by means of complex variable techniques.
Such quadratic estimates turned out to be essential tools for proving the

boundedness of the Cauchy integral and other related operators on Lipschitz

curves in C [CJS] and even Lipschitz hypersurfaces in R"+1 [LMS]. They were

also used in connection with elliptic boundary value problems on nonsmooth
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domains [Ve],[DKVl]. An important feature of these inequalities resides in the

fact that they could be used to prove Sobolev-Besov space regularity results for
the solutions of boundary value problems for the Laplacian [Fa],[JK]. Further-

more, these estimates can be also interpreted as a higher-dimensional version

of the Burkholder-Gundy-Silverstein theorem [BGS] on nonsmooth domains.

Indeed, they readily imply that ||w*||L2(ÖC,) « ¿/IIm]IIl2(öo.) > where {w;}7 are

the harmonic conjugates of u (as usual, * stands for the usual nontangential
maximal operator); cf. also [Vej.

The aim of this paper is to present several new proofs and extensions of the

above estimates. An interesting feature is that, in some sense, (1) and (2) are

dual to each other so that it actually suffices to dispose of only one of them.

This can be done, for instance, by an application of (a simple) form of the T(b)

theorem [MM],[DJS],[Se]. The techniques involved heavily depend on results

from the theory of elliptic PDE's on nonsmooth domains [Ve],[DK], and are also

shown to work in several other instances, including even systems of equations

(cf. §6).

2.   Proofof(2)=¡>(1)

Let n(X) be the outward unit normal defined at a.e. X £ dQ, and let an

be the area of the unit sphere in K"+1 . Consider

3f{X):=-¡¡-[   {nll)^;J)f(Y)dS(Y),    XfdQ,
°n JdCl      \X - I I"

the usual double layer potential operator on dQ, and let

±]r + JT J f(X) :=     lim    3f(Y),      at a.e. X £ dQ,
2 J Y^X

Y€±y+X

be its nontangential boundary traces. Here, y is an upright circular cone, which

is sufficiently sharp and centered at the origin of R"+1 (cf. [Ve],[DK]).

For a harmonic function u in Q which is small at infinity and s > 0,

Verchota's representation theorem [Ve] for vs := (dou)\ci+(S ,0) gives that, for

any t > 0,

(fibiO(jr + (i + r,0))

1   /   (n(Y),X-Y + (t,0)) IV1 y\
-ajaa    \X-Y + (t,0)\»+i       V2       V

(Y + (s,0))dS(Y),

where 3£s stands for the singular double layer potential operator correspond-

ing to the hypersurface dQ + (s, 0). Now let h be an arbitrary function in
L™mp(dQ). Differentiating the above equality with respect to t, making then

s = t, and finally integrating against jm J0°° h(X)tdtdS(X), we get

HI (d¿u)(X + (2t,0))h(X)tdtdS(X)
Jo   Jdiï

= -T¡   dv(2h)(Y-(t,0))  (\+3¿\    v,
On Jo Jan \¿        )

(Y + (t,0))tdtdS(Y).
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In the left-hand side of this identity we integrate by parts twice in the variable

t and, as u vanishes at infinity, obtain

(3) the left-hand side = - (   u(X)h(X) dS(X).
4 Jan

As for the right-hand side, we first use the Schwarz inequality in the variable Y,
remove (l/2+^)_1 (as this is an isomorphism of L2(dQ+ (t, 0)) with norm
uniformly bounded in t [Ve],[DK]), then use once again Schwarz inequality for

the measure tdt, and finally end up with

the right-hand side
\ l'y 1/9

-C(/ijVM(7)|2¿(r)£/y)     (jja\V®h(Y)\2ô(Y)dY^     .

This together with (3), (2) and the usual argument completes the proof of the

implication (2) => (1).

3.   Proof of (1)=^ (2)

Here we closely follow the lines of [CJS]. Let Q+ := Q, Q_ := K"+1 \Q,
and

1/2

r± := { F : Q± -> C ; \\F\U := I / /    \F(X)\2S(X) dX \     < +ooJJa   \F(X)\2S(X)dXJ     <+c

Consider the operator IT acting on functions defined in Q by

FF(X) := JJ (ViK)(Y, X)F(Y)ô(Y)dY,        X £ dQ,

where K(X, Y) is the kernel of the singular double layer potential operator

X. By the Schur test, v^ : ̂ + -> %?- is readily seen to be bounded so that,

by (1), 9~ : MT+ -» L2(dQ) is bounded too.

Now let u = 9¡f, for some / e L2(dQ) so that ||«*||i2(aii) « ||/||L2(an)
([Ve]). Since for any fe/+,

if V(®f)(X)F(X)S(X)dX= [   f(Y)(^F)(Y)dS(Y),
JJa Jan

a simple duality argument completes the proof of the implication (1) => (2).

4.     A DIRECT PROOF OF (2)

In this section we present several ways of directly disposing of (2). For

instance, if g is the usual Littlewood-Paley function (see, e.g., [St]) and W

is the higher-dimensional Cauchy integral operator (cf., e.g., [Me],[Mu],[Mc]),

then for any u - 2 f in Q, with f £ L2(dQ), we have

V u\2s)      < C\\g(3ff)\\LHdíi) < C\\g(Wf)\\L2(9il)

< C||/l|L2(öo.) ~ llMlli2(an)-

In fact, it is possible to prove that all the above quantities are equivalent and

hence obtain a direct proof of (1) and (2); see [Ml-2] for such an approach.

(IL
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However, the second inequality is a mere consequence of the fact that 2 f =
Re («7) (cf., e.g., [Mc]).

As for the third inequality, one can use the "analyticity" of W f to check the

hypotheses of (an easy version of) the T(b) theorem from which this follows

(cf. [Me] in the two-dimensional case and [Ml] in arbitrary dimensions). See

also [Kl] for a direct proof in the complex plane case. Actually, one can prove

directly that \\g(3f f)\\Li(aa) < C||/||L2(a£i) by relying on a version of the T(b)
theorem for singular integrals with harmonic kernels (cf., e.g., [Ta]).

Another way of justifying the estimate \\g(&f)\\Li(aa) < C||/1lz.2(90;) > which

also has the advantage of generalizing to other situations, is to use Semmes's

square function theorem [Se]. Consider tp: R" —► R the Lipschitz function

whose graph is dQ. Let 6t(x, y) := t(\j2T)((p(x) - tp(y) +1, x-y), for t > 0,
x,y £ R", and T(X) := -(« - l)-la~l\X\l-n, the canonical fundamental

solution for the Laplacian in R"+1 ( n > 2 ). Also set

etf(x):= [ et(x,y)f(y)dy,    x £ R" ,   / > 0.

In this context, Semmes's theorem asserts that if there exists a para-accretive
function b £ L°°(Rn) (cf., e.g., [Se]) such that

(4) / 6,(x, y)b(y)dy = 0,    x£Rn,   t>0,
Jr"

f°° dt
(5) jf   lie,/u22(Kn) y < cu/u2w

then

/o

This clearly furnishes the desired estimate, as the left-hand side of (5) is essen-

tially \\g(2f)\\\2{an) ■ Finally, to see that (4) is fulfilled, it suffices to note that

if K(X, Y) is as in §3, then

\jK(X, Y)dS(Y) = 0,     for all X £ Q,I ■
Jaa

as one can easily check (for instance by using Green's theorem) that V-®XU =
0.

5.     A DIRECT PROOF OF (1)

Perhaps the easiest way of proving ( 1 ) directly is by using Dahlberg's estimate

[D2]:

(6)        \¡¡ (s/u,A)dX
\JJa

< C\\g(u)\\LHdQ)(\\g(A)\\Llm) + \\A*\\maa)).

Here, u is a harmonic function in Q and A is a smooth vector field in Q,

small at infinity. It is easy to see that (6) implies (1), as we can write

/   \u\2dS <C\f[d0u u dX\ =   // (v«, (u,0,... ,0))dX
Jaa \J Ja \J Ja

The rest of this section is devoted to presenting an elementary, simple proof of

(6), along the lines of [D2], [LMS], [K2].
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Let <p : R" —> R be the Lipschitz continuous function whose graph is 9Í2.

Choose 6 a positive, radial, smooth, compactly supported function on R",
with integral one, and let

<p(t, x) := Xt + (9, * tp)(x),    (t,x)£ Rn++l,

be the Kenig-Stein function. For a sufficiently large constant X, this function

has a bounded gradient, dttp(t, x) > 1, and \s72tp(t, x)\2tdtdx is a Carleson

measure on R"+1.

Next, we shall make the change of variable X = <p(t, x), so that we are led
to considering terms of the form

/     /   bj(t, x)djU(t, x)Aj(t, x) dtdx,
Jo   Jr"

with b £ L°° and | v b(t, x)\2tdtdx Carleson measure. Since eventually
passing from u to one of its harmonic conjugates leaves the right-hand side of
(6) invariant, we may assume that djU(t, x) appears above only for j / 0.

Writing I — j¡t under the integral sign and integrating by parts, we obtain

terms of the form // tbdxudtAdtdx or //tdtbdxuAdtdx (with dt and dx
eventually interchanged).

Finally, by the Schwarz inequality and the usual Carleson measure type esti-
mate, we can obviously dominate these integrals with bounds of the right order.

6.   Other applications

Here we shall briefly outline further extensions and applications of the tech-
niques presented in the previous sections.

Our first remark concerns the so called metaharmonic functions, i.e., func-

tions annihilated by the Helmholtz operator A + z, with z a complex number,

z $ R+ . An acoustic potential theory on nonsmooth domains, parallel to the

one for the Newtonian potential as presented in [Ve],[DK], is available from
[BS],[M3],[TW]. Actually, all we need here are the corresponding Rellich type

identities for the graph case, which can easily be deduced as in e.g. [Br, p. 355].

With this at hand, the reasonings from the sections 2 and 4 get through, and
the conclusion is that (1) and (2) are also valid for metaharmonic functions.

Implications to the regularity of the solutions of boundary value problems for

the Helmholtz operator in Lipschitz domains are examined to a certain extent
in [M3] and [MTW].

Another example is furnished by the solutions to the Lamé system of equa-
tions

pA« + (X + p) y div ü = 0,

with X > 0, p > 0. A complete L2-theory in bounded Lipschitz domains is

presented in [DKV2]. However, it can easily be checked that the results carry

over the case of unbounded Lipschitz domains too. Therefore, as before, the
estimates (1) and (2) can be shown to be valid in this case also.

Finally, we remark that, with natural modifications, all these results continue

to hold in the bounded Lipschitz domain case. This can be seen by a localization

argument similar to the one presented for instance in [DK].
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