## The module of derivations of a Stanley-Reisner ring

HTML articles powered by AMS MathViewer

- by Paulo Brumatti and Aron Simis PDF
- Proc. Amer. Math. Soc.
**123**(1995), 1309-1318 Request permission

## Abstract:

An explicit description is given of the module $\operatorname {Der}(k[\underline X ]/I,k[\underline X ]/I)$ of the derivations of the residue ring $k[\underline X]/I$, where*I*is an ideal generated by monomials whose exponents are prime to the characteristic of the field

*k*(this includes the case of square free monomials in any characteristic and the case of arbitrary monomials in characteristic zero). In the case where

*I*is generated by square free monomials, this description is interpreted in terms of the corresponding abstract simplicial complex $\Delta$. Sharp bounds for the depth of this module are obtained in terms of the depths of the face rings of certain subcomplexes ${\Delta _i}$ related to the stars of the vertices ${v_i}$ of $\Delta$. The case of a Cohen-Macaulay simplicial complex $\Delta$ is discussed in some detail: it is shown that $\operatorname {Der}(k[\Delta ],k[\Delta ])$ is a Cohen-Macaulay module if and only if ${\text {depth}}{\Delta _i} \geq \dim \Delta - 1$ for every vertex ${v_i}$. A measure of triviality of the complexes ${\Delta _i}$ is introduced in terms of certain

*star corners*of ${v_i}$. A curious corollary of the main structural result is an affirmative answer in the present context to the conjecture of Herzog-Vasconcelos on the finite projective dimension of the $k[\underline X ]/I$-module $\operatorname {Der}(k[\underline X ]/I,k[\underline X ]/I)$.

## References

- Maurice Auslander and David A. Buchsbaum,
*Codimension and multiplicity*, Ann. of Math. (2)**68**(1958), 625–657. MR**99978**, DOI 10.2307/1970159 - Kenneth Baclawski,
*Cohen-Macaulay connectivity and geometric lattices*, European J. Combin.**3**(1982), no. 4, 293–305. MR**687728**, DOI 10.1016/S0195-6698(82)80014-0 - Winfried Bruns and Udo Vetter,
*Determinantal rings*, Lecture Notes in Mathematics, vol. 1327, Springer-Verlag, Berlin, 1988. MR**953963**, DOI 10.1007/BFb0080378 - Ralf Fröberg,
*A study of graded extremal rings and of monomial rings*, Math. Scand.**51**(1982), no. 1, 22–34. MR**681256**, DOI 10.7146/math.scand.a-11961 - Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal,
*On the ideal theory of graphs*, J. Algebra**167**(1994), no. 2, 389–416. MR**1283294**, DOI 10.1006/jabr.1994.1192 - Hideyuki Matsumura,
*Commutative ring theory*, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR**879273** - Gerald Allen Reisner,
*Cohen-Macaulay quotients of polynomial rings*, Advances in Math.**21**(1976), no. 1, 30–49. MR**407036**, DOI 10.1016/0001-8708(76)90114-6 - Rafael H. Villarreal,
*Cohen-Macaulay graphs*, Manuscripta Math.**66**(1990), no. 3, 277–293. MR**1031197**, DOI 10.1007/BF02568497

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 1309-1318 - MSC: Primary 13C14; Secondary 13B10, 13N05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1243162-7
- MathSciNet review: 1243162