TWISTING OPERATIONS AND COMPOSITE KNOTS

MASAKAZU TERAGAITO

(Communicated by Ronald Stern)

Abstract. Suppose that a composite knot K in S^3 can be changed to a trivial knot by $1/n$-surgery along a trivial loop C. We show that $|n| \leq 2$. Moreover, if there is a decomposing sphere of K which meets C in two points, then $|n| \leq 1$.

1. Introduction

Let K be a knot in the 3-sphere S^3 and D a disk which intersects K transversely in its interior. Let $C = \partial D$. We get a new knot K^* in S^3 as the image of K after doing $1/n$-surgery along C. We say that K^* is obtained from K by n-twisting along C. In particular, this operation is called a trivializing n-twist of K if K^* is unknotted. We remark that a crossing change is equivalent to ± 1-twist on a disk which intersects K in precisely two points.

In [4], Mathieu asked if there is a composite knot which admits a trivializing twist. Several families of composite knots are known to admit trivializing twists at present [5], [7], [11]. Since all the examples of trivializing twists of composite knots are ± 1-twists, it is conjectured that if a composite knot admits a trivializing n-twist, then $|n| \leq 1$ [6]. In fact, Motegi [6] proved that $|n| \leq 5$, by making use of Gordon’s result about Dehn fillings on hyperbolic manifolds [2].

In this paper we improve Motegi’s result as follows.

Theorem 1. If a composite knot K admits a trivializing n-twist, then $|n| \leq 2$.

The possibility of $|n| = 2$ remains an open problem.

If a knot K is composite, then there is a 2-sphere S which intersects K transversely in two points, such that each one of the 3-balls bounded by S intersects K in a knotted spanning arc. Such a sphere is called a decomposing sphere of K.

Theorem 2. Suppose that a composite knot K admits a trivializing n-twist along C and that there is a decomposing sphere S of K which intersects C transversely in two points. Then $|n| \leq 1$.

Received by the editors September 7, 1993.
1991 Mathematics Subject Classification. Primary 57M25.
Key words and phrases. Knot, twisting.
It is easy to verify that all known examples in the above papers satisfy this assumption. An example is illustrated in Figure 1.

Scharlemann [9] proved that unknotting number one knots are prime. That is, a composite knot cannot be trivialized by ±1-twists on a disk which meets the knot in two points. (See also [10].) Miyazaki-Yasuhara [5] found many examples of composite knots which do not admit trivializing twists.

I would like to thank the referee for helpful comments.

2. Preliminaries

Let K be a composite knot in S^3. Suppose that K admits a trivializing n-twist along C. Let $M = S^3 - \text{Int } N(K \cup C)$. Let us write $T = \partial N(C), T' = \partial N(K)$. Slopes on T or T' will be parametrized by $\mathcal{S} \cup \{1/0\}$ in the usual way (cf. [8]), using a meridian-longitude basis. Since $K \cup C$ is unsplittable in S^3, M is irreducible. For any slope r on T, let $M(r)$ denote the manifold obtained from M by r-Dehn filling on T, that is, by attaching a solid torus J to M along T so that r bounds a disk in J. It is immediate from the definitions that K is trivialized by n-twisting along C if and only if $M(1/n)$ is a solid torus. Note that $M(1/0) = S^3 - \text{Int } N(K)$.

Let S be a decomposing sphere of K. Isotope S so that $S \cap N(C)$ is a disjoint union of meridian disks of $N(C)$ and $m = |S \cap N(C)|$ is minimal. Note that $m \geq 2$. Then $P = S \cap M$ is an incompressible planar surface in M, with two outer boundary components $\partial_0 P, \partial_\infty P$, lying in T', and m inner boundary components $\partial_i P$, $i = 1, \ldots, m$, lying in T. Here, the inner
boundary components are numbered so that they are consecutive on T. Each component of ∂P has slope $1/0$ in T or T'.

Let D_0 be a meridian disk of $M(1/n)$. Isotope D_0 so that $D_0 \cap J$ is a disjoint union of meridian disks of J. We choose D_0 so that $l = |D_0 \cap J|$ is minimal over all meridian disks of $M(1/n)$. Note that $l \geq 2$. If $l = 1$, then we regard J as a regular neighborhood of a core of $M(1/n)$. This would imply that $M(1/0)$ is a solid torus. From the minimality of l, $Q = D_0 \cap M$ is an incompressible planar surface in M, with one outer boundary component $\partial_0 Q$, lying in T', and l inner boundary components $\partial_j Q$, $j = 1, \ldots, l$, each having slope $1/n$ in T. The inner boundary components are numbered consecutively on T. It is easy to see that $\partial_0 Q$ has slope $n\omega^2/1$, where $\omega = \text{lk}(K, C)$.

By an isotopy of Q, we may assume that P and Q intersect transversely, and each outer boundary component of P intersects $\partial_0 Q$ exactly once, and each inner boundary component of P intersects each inner boundary of Q in $|n|$ points. Thus, for example, when we go around an inner boundary component of P, we will consecutively meet $\partial_1 Q, \partial_2 Q, \ldots, \partial_l Q, \ldots, \partial_1 Q, \ldots, \partial_l Q$ (repeated $|n|$ times). By an innermost argument, we can assume that no loop component of $P \cap Q$ bounds a disk in P or Q, since P and Q are incompressible and M is irreducible.

As in [1], we form the associated graphs G_P and G_Q. Let A be the annulus obtained by capping off the inner boundary components of P by meridian disks of $N(C)$. We obtain a graph G_P in A by taking as the “fat” vertices of G_P the disks in $N(C)$ that cap off the inner boundary components of P, and as the edges of G_P the arc components of $P \cap Q$ in P. Similarly we obtain the graph G_Q in the disk D_0.

Let G denote either G_P or G_Q.

If an edge e connects a vertex to a vertex, then e is an interior edge; otherwise, it is a boundary edge. Note that G has at most two boundary edges. If G_P has two boundary edges, so does G_Q, and vice versa. Each vertex of G_P (G_Q) has degree $|n|/ (|n| m$, resp.).

Let e be an edge of G_P. If an end point of e is in $\partial P \cap \partial_j Q$, then we give this end point of e the label j. Thus each incidence of an edge of G_P at a vertex of G_P is labeled with a vertex of G_Q. Similarly in G_Q, label the end points of edges incident to vertices.

Two vertices of G_P (G_Q) are parallel if the corresponding inner boundary components of $P(Q)$, when given the orientations induced by some orientation of $P(Q)$, are homologous in T; otherwise, they are antiparallel. Since M is orientable, we have the parity rule:

An interior edge e of G_P connects parallel vertices in G_P if and only if e connects antiparallel vertices in G_Q.

An x-cycle in G is a cycle σ of edges in G such that all the vertices of G in σ are parallel and σ can be oriented so that the tail of each edge has label x. A Scharlemann cycle in G is an x-cycle σ in G for some label x such that σ bounds a disk face of G. In particular, a Scharlemann cycle of length 1 will be called a trivial loop.

Lemma 1. G contains no trivial loops.

Proof. This follows immediately from the minimality of l or m.

Lemma 2. G contains no Scharlemann cycles.
The proof is analogous to [1, proof of Lemma 2.5.2] or [3, proof of Lemma 3.3]. We omit the details.

3. PROOFS

To find Scharlemann cycles, we consider the following conditions as in [1]:

(*) There exists a vertex x of G such that for each label y there is an edge of G incident to x with label y, connecting x to an antiparallel vertex of G.

(**) For each vertex x of G there exists a label $y(x)$ such that each edge of G incident to x with label $y(x)$ connects x either to a parallel vertex of G or to an outer boundary.

In fact, (**) is the negation of (*).

Lemma 3. Suppose that G_P satisfies (*). Then G_Q contains a Scharlemann cycle.

Proof. See [1, Lemmas 2.6.2 and 2.6.3].

Remark. In general, we cannot exchange the roles of P and Q in the statement of Lemma 3. Because an x-cycle in G_P does not necessarily bound a disk in the annulus A. However, when G_P has only one boundary edge, we can conclude that G_P contains a Scharlemann cycle if G_Q satisfies (*).

Lemma 4. Let x be a vertex of G_P. If there exist successive l edges of G_P connecting x to antiparallel vertices, then G_Q contains a Scharlemann cycle.

Proof. This follows immediately from Lemma 3.

Lemma 5. If G contains a parallel family of edges connecting parallel vertices, then either the sets of labels at the two ends of the family are disjoint, or G contains a Scharlemann cycle. In particular, if G_P (G_Q) contains a parallel family of more than $l/2$ ($m/2$, resp.) edges connecting parallel vertices, then G_P (G_Q) contains a Scharlemann cycle.

Proof. See [1, Lemma 2.6.6 and Corollary 2.6.7].

Lemma 6. Suppose that $|n| \geq 2$ and that G_Q satisfies (**). Then either G_Q contains a Scharlemann cycle or every vertex of G_P belongs to a boundary edge of G_P.

Proof. This is essentially [1, Lemma 2.6.4]. The proof works well even if G_P is a graph in an annulus.

We remark that the latter conclusion of Lemma 6 implies that G_P has exactly two vertices.

Now suppose that G_P satisfies (**). Let v be a vertex of G_P. There exists a label $y(v)$ such that each one of $|n|$ edges of G_P incident to v with label $y(v)$ connects v either to a parallel vertex or to ∂A. Fix the label $y(v)$. These $|n|$ edges will be called the $y(v)$-edges at v. A corner at v is an interval on the boundary of the fat vertex v between successive labels $y(v)$. There are $|n|$ corners around v, and there are $l-1$ incidences of edges to v in the interior of a corner. Let $\Gamma = G_P - \{\text{boundary edges}\}$. Let $\overline{\Gamma}$ be the reduced graph of Γ, obtained by amalgamating all mutually parallel edges in the obvious way. Then G_P, Γ, and $\overline{\Gamma}$ have the same vertex set.

We now want to estimate the degree $\deg_{\overline{\Gamma}}(v)$ of v in $\overline{\Gamma}$.
Lemma 7. Suppose that G_P satisfies (**). Let v be a vertex of G_P, and let $b(v)$ be the number of boundary edges incident to v. Then $\deg_{\overline{T}}(v) \geq 2|\pi| - b(v)$.

Proof. By Lemmas 2 and 5, any pair of $y(v)$-edges is not parallel. Hence the $y(v)$-edges, except for boundary edges, correspond to distinct edges of \overline{T}. Also, not all the $l - 1$ edges incident to v in the interior of a corner are parallel to $y(v)$-edges. Therefore, the interior of a corner yields at least one edge of \overline{T} unless it does not meet a boundary edge. The conclusion follows from these observations.

In fact, we have three possibilities, according to the situation in G_P:

1) No boundary edge is incident to v.
2) Only one boundary edge is incident to v.
3) Two boundary edges are incident to v.

There is at most one vertex of G_P that satisfies (3). If a vertex satisfies (2), then G_P has precisely two such vertices.

The following lemma is an easy consequence of Lemma 7 and the observation above.

Lemma 8. Let Λ be a component of \overline{T}. Let V and E be the number of vertices and edges of Λ. Then $|\pi| V \leq E + 1$.

Possibly, G_P is disconnected. Choose a point $z \in \partial A - G_P$. We define a partial ordering on the set of components of G_P as in [1]. For two components H_1 and H_2 of G_P, $H_1 < H_2$ if and only if every path in A from H_1 to z meets H_2. A component of G_P is extremal if it is minimal with respect to the partial ordering for some choice of z.

Proof of Theorem 1. Suppose that $|\pi| \geq 3$. If G_P satisfies (*), then G_Q would contain a Scharlemann cycle by Lemma 3, contradicting Lemma 2. Thus G_P satisfies (**).

We may assume that G_P is connected. If G_P is disconnected, we will replace G_P by an extremal component. (We avoid a component without vertex.) We consider the reduced graph $\overline{\Gamma}$ of $\Gamma = G_P - \{\text{boundary edge}\}$ as before. Since G_P is connected, $\overline{\Gamma}$ is also connected. Let V, E, and F be the number of vertices, edges, and faces of $\overline{\Gamma}$. We do not count the region meeting a component of ∂A as a face of $\overline{\Gamma}$. By Lemma 8, $3V \leq E + 1$. Since $\overline{\Gamma}$ has no 1-sided faces or parallel edges, every face has at least three sides. Let F_0 and F_∞ be the components of $A - \overline{\Gamma}$ containing $\partial_0 P$ and $\partial_\infty P$ respectively (possibly, $F_0 = F_\infty$). The frontiers Fr_{F_0} and Fr_{F_∞} can be expressed as the unions of a sequence of edges. Let a and b be the number of edges in Fr_{F_0} and Fr_{F_∞} respectively. Note that a double edge is counted twice. Then $3F + a \leq 2E$ if $F_0 = F_\infty$, or $3F + (a + b) \leq 2E$ if $F_0 \neq F_\infty$. By Euler's formula, $1 = V - E + F \leq \frac{1-a}{3}$ if $F_0 = F_\infty$, or $0 = V - E + F \leq \frac{1-(a+b)}{3}$ if $F_0 \neq F_\infty$. This is a contradiction in either case. This completes the proof.

Proof of Theorem 2. Suppose that $|\pi| \geq 2$. Since $|S \cap N(C)| = 2$, G_P has exactly two vertices x and y that are antiparallel. If G_P has only one boundary edge, then the arc corresponding to the boundary edge is essential in the annulus A. If G_Q satisfies (*), then G_P contains a Scharlemann cycle by the remark after Lemma 3. If G_Q satisfies (**), then Lemma 6 implies that G_Q contains a Scharlemann cycle, since no vertex of G_P belongs to a boundary edge. In either
case, Lemma 2 gives a contradiction. Hence G_P has exactly two boundary edges.

If two boundary edges are incident to the same vertex x, say, then there is a loop σ at y, since x and y have the same degree. However, σ bounds a disk which does not contain the vertex x. Hence, there would be a trivial loop. This contradicts Lemma 1. Thus each vertex belongs to a single boundary edge.

We distinguish two cases.

(1) G_P contains no loops.

Then all the interior edges incident to x connect vertices x and y. By Lemma 4, G_Q contains a Scharlemann cycle. This contradicts Lemma 2.

(2) G_P contains a loop.

There is a loop based at x. Any loop must be essential in A. Consider the edge e incident to x immediately to the right of the boundary edge. Then e must be a loop. Otherwise, a loop based at x would be inessential in A. Then, without loss of generality, we have a situation as in Figure 2.

Suppose that there are s parallel loops, including e. Then by Lemma 5, $s \leq l/2$. But if $s = l/2$, then a loop has the same label at both ends, which contradicts the parity rule. Therefore, $2s + 1 \leq l$. Hence, there are at least l edges connecting x to y, since x has degree $|n|/ \geq 2l$. Then, by Lemma 4, G_Q contains a Scharlemann cycle, a contradiction. This completes the proof.

REFERENCES

2. C. McA. Gordon, When are tori created by Dehn surgery?, Conference Report for the International Conference on Knot Theory and Related Topics, 1990, pp. 18–19.
3. ———, Combinatorial methods in knot theory, Algebra and Topology (S. H. Bae and G. T.

Department of Mathematics, Kobe University, Rokko 1-1, Nada, Kobe 657, Japan