## Twisting operations and composite knots

HTML articles powered by AMS MathViewer

- by Masakazu Teragaito PDF
- Proc. Amer. Math. Soc.
**123**(1995), 1623-1629 Request permission

## Abstract:

Suppose that a composite knot*K*in ${S^3}$ can be changed to a trivial knot by 1/

*n*-surgery along a trivial loop

*C*. We show that $|n| \leq 2$. Moreover, if there is a decomposing sphere of

*K*which meets

*C*in two points, then $|n| \leq 1$.

## References

- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen,
*Dehn surgery on knots*, Ann. of Math. (2)**125**(1987), no. 2, 237–300. MR**881270**, DOI 10.2307/1971311
C. McA. Gordon, - C. McA. Gordon,
*Combinatorial methods in knot theory*, Algebra and topology 1990 (Taejon, 1990) Korea Adv. Inst. Sci. Tech., Taejŏn, 1990, pp. 1–23. MR**1098718** - Yves Mathieu,
*Unknotting, knotting by twists on disks and property $(\textrm {P})$ for knots in $S^3$*, Knots 90 (Osaka, 1990) de Gruyter, Berlin, 1992, pp. 93–102. MR**1177414** - Katura Miyazaki and Akira Yasuhara,
*Knots that cannot be obtained from a trivial knot by twisting*, Geometric topology (Haifa, 1992) Contemp. Math., vol. 164, Amer. Math. Soc., Providence, RI, 1994, pp. 139–150. MR**1282760**, DOI 10.1090/conm/164/01590 - Kimihiko Motegi,
*Primeness of twisted knots*, Proc. Amer. Math. Soc.**119**(1993), no. 3, 979–983. MR**1181171**, DOI 10.1090/S0002-9939-1993-1181171-5 - Kimihiko Motegi and Tetsuo Shibuya,
*Are knots obtained from a plain pattern always prime?*, Kobe J. Math.**9**(1992), no. 1, 39–42. MR**1189955** - Dale Rolfsen,
*Knots and links*, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR**0515288** - Martin G. Scharlemann,
*Unknotting number one knots are prime*, Invent. Math.**82**(1985), no. 1, 37–55. MR**808108**, DOI 10.1007/BF01394778 - Martin Scharlemann and Abigail Thompson,
*Unknotting number, genus, and companion tori*, Math. Ann.**280**(1988), no. 2, 191–205. MR**929535**, DOI 10.1007/BF01456051 - Masakazu Teragaito,
*Composite knots trivialized by twisting*, J. Knot Theory Ramifications**1**(1992), no. 4, 467–470. MR**1194998**, DOI 10.1142/S0218216592000239

*When are tori created by Dehn surgery*?, Conference Report for the International Conference on Knot Theory and Related Topics, 1990, pp. 18-19.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 1623-1629 - MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254855-X
- MathSciNet review: 1254855