Twisting operations and composite knots
HTML articles powered by AMS MathViewer
- by Masakazu Teragaito
- Proc. Amer. Math. Soc. 123 (1995), 1623-1629
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254855-X
- PDF | Request permission
Abstract:
Suppose that a composite knot K in ${S^3}$ can be changed to a trivial knot by 1/n-surgery along a trivial loop C. We show that $|n| \leq 2$. Moreover, if there is a decomposing sphere of K which meets C in two points, then $|n| \leq 1$.References
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237–300. MR 881270, DOI 10.2307/1971311 C. McA. Gordon, When are tori created by Dehn surgery?, Conference Report for the International Conference on Knot Theory and Related Topics, 1990, pp. 18-19.
- C. McA. Gordon, Combinatorial methods in knot theory, Algebra and topology 1990 (Taejon, 1990) Korea Adv. Inst. Sci. Tech., Taejŏn, 1990, pp. 1–23. MR 1098718
- Yves Mathieu, Unknotting, knotting by twists on disks and property $(\textrm {P})$ for knots in $S^3$, Knots 90 (Osaka, 1990) de Gruyter, Berlin, 1992, pp. 93–102. MR 1177414
- Katura Miyazaki and Akira Yasuhara, Knots that cannot be obtained from a trivial knot by twisting, Geometric topology (Haifa, 1992) Contemp. Math., vol. 164, Amer. Math. Soc., Providence, RI, 1994, pp. 139–150. MR 1282760, DOI 10.1090/conm/164/01590
- Kimihiko Motegi, Primeness of twisted knots, Proc. Amer. Math. Soc. 119 (1993), no. 3, 979–983. MR 1181171, DOI 10.1090/S0002-9939-1993-1181171-5
- Kimihiko Motegi and Tetsuo Shibuya, Are knots obtained from a plain pattern always prime?, Kobe J. Math. 9 (1992), no. 1, 39–42. MR 1189955
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Martin G. Scharlemann, Unknotting number one knots are prime, Invent. Math. 82 (1985), no. 1, 37–55. MR 808108, DOI 10.1007/BF01394778
- Martin Scharlemann and Abigail Thompson, Unknotting number, genus, and companion tori, Math. Ann. 280 (1988), no. 2, 191–205. MR 929535, DOI 10.1007/BF01456051
- Masakazu Teragaito, Composite knots trivialized by twisting, J. Knot Theory Ramifications 1 (1992), no. 4, 467–470. MR 1194998, DOI 10.1142/S0218216592000239
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1623-1629
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254855-X
- MathSciNet review: 1254855