Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

New formulae for the Bernoulli and Euler polynomials at rational arguments
HTML articles powered by AMS MathViewer

by Djurdje Cvijović and Jacek Klinowski PDF
Proc. Amer. Math. Soc. 123 (1995), 1527-1535 Request permission

Abstract:

We prove theorems on the values of the Bernoulli polynomials ${B_n}(x)$ with $n = 2,3,4, \ldots$, and the Euler polynomials ${E_n}(x)$ with $n = 1,2,3, \ldots$ for $0 \leq x \leq 1$ where x is rational. ${B_n}(x)$ and ${E_n}(x)$ are expressible in terms of a finite combination of trigonometric functions and the Hurwitz zeta function $\zeta (z,\alpha )$. The well-known argument-addition formulae and reflection property of ${B_n}(x)$ and ${E_n}(x)$, extend this result to any rational argument. We also deduce new relations concerning the finite sums of the Hurwitz zeta function and sum some classical trigonometric series.
References
  • Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966. MR 0208797
  • A. Erdeley, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953. A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An index of mathematical tables (2nd ed.), Blackwell Scientific Publications, Oxford, England, 1962. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York, 1980. E. R. Hansen, A table of series and products, Prentice-Hall, Englewood Cliffs, NJ, 1975. C. Jordan, Calculus of finite differences, Chelsea, New York, 1947.
  • Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968, DOI 10.1007/978-3-662-11761-3
  • L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan & Co., Ltd., London, 1951. MR 0043339
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series. Vol. 3, Gordon and Breach Science Publishers, New York, 1990. More special functions; Translated from the Russian by G. G. Gould. MR 1054647
  • E. L. Stark, $\sum ^{\infty }_{k=1}K^{-s},$ $s=2,\,3,\,4\cdots$, once more, Math. Mag. 47 (1974), 197–202. MR 352775, DOI 10.2307/2689209
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11M35, 11B68, 33E99
  • Retrieve articles in all journals with MSC: 11M35, 11B68, 33E99
Additional Information
  • © Copyright 1995 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 123 (1995), 1527-1535
  • MSC: Primary 11M35; Secondary 11B68, 33E99
  • DOI: https://doi.org/10.1090/S0002-9939-1995-1283544-0
  • MathSciNet review: 1283544